Fuzzy Object Skeletonization: Theory, Algorithms, and Applications

Skeletonization offers a compact representation of an object while preserving important topological and geometrical features. Literature on skeletonization of binary objects is quite mature. However, challenges involved with skeletonization of fuzzy objects are mostly unanswered. This paper presents a new theory and algorithm of skeletonization for fuzzy objects, evaluates its performance, and demonstrates its applications. A formulation of fuzzy grassfire propagation is introduced; its relationships with fuzzy distance functions, level sets, and geodesics are discussed; and several new theoretical results are presented in the continuous space. A notion of collision-impact of fire-fronts at skeletal points is introduced, and its role in filtering noisy skeletal points is demonstrated. A fuzzy object skeletonization algorithm is developed using new notions of surface- and curve-skeletal voxels, digital collision-impact, filtering of noisy skeletal voxels, and continuity of skeletal surfaces. A skeletal noise pruning algorithm is presented using branch-level significance. Accuracy and robustness of the new algorithm are examined on computer-generated phantoms and micro- and conventional CT imaging of trabecular bone specimens. An application of fuzzy object skeletonization to compute structure-width at a low image resolution is demonstrated, and its ability to predict bone strength is examined. Finally, the performance of the new fuzzy object skeletonization algorithm is compared with two binary object skeletonization methods.

[1]  Sankar K. Pal Fuzzy skeletonization of an image , 1989, Pattern Recognit. Lett..

[2]  Gunilla Borgefors,et al.  Distance transformations in digital images , 1986, Comput. Vis. Graph. Image Process..

[3]  Paul A. Yushkevich,et al.  Segmentation, registration, and measurement of shape variation via image object shape , 1999, IEEE Transactions on Medical Imaging.

[4]  Gabriella Sanniti di Baja Well-Shaped, Stable, and Reversible Skeletons from the (3, 4)-Distance Transform , 1994, J. Vis. Commun. Image Represent..

[5]  Richard E. Parent,et al.  Automated generation of control skeletons for use in animation , 2002, The Visual Computer.

[6]  Attila Kuba,et al.  A Parallel 3D 12-Subiteration Thinning Algorithm , 1999, Graph. Model. Image Process..

[7]  Isabelle Bloch,et al.  Fuzzy skeleton by influence zones - Application to interpolation between fuzzy sets , 2008, Fuzzy Sets Syst..

[8]  Gabriella Sanniti di Baja,et al.  Decomposing 3D Objects in Simple Parts characterized by Rectilinear spines , 2014, Int. J. Pattern Recognit. Artif. Intell..

[9]  Rangasami L. Kashyap,et al.  Building Skeleton Models via 3-D Medial Surface/Axis Thinning Algorithms , 1994, CVGIP Graph. Model. Image Process..

[10]  Punam K. Saha,et al.  Three-dimensional digital topological characterization of cancellous bone architecture , 2000, Int. J. Imaging Syst. Technol..

[11]  Dinesh Manocha,et al.  Efficient computation of a simplified medial axis , 2003, SM '03.

[12]  Bidyut Baran Chaudhuri,et al.  3D Digital Topology under Binary Transformation with Applications , 1996, Comput. Vis. Image Underst..

[13]  Gábor Székely,et al.  3D Voronoi Skeletons and Their Usage for the Characterization and Recognition of 3D Organ Shape , 1997, Comput. Vis. Image Underst..

[14]  M. Kleerekoper,et al.  Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. Implications for the microanatomic and cellular mechanisms of bone loss. , 1983, The Journal of clinical investigation.

[15]  Zhengrong Liang,et al.  Automatic centerline extraction for virtual colonoscopy , 2002, IEEE Transactions on Medical Imaging.

[16]  M. Kleerekoper,et al.  The role of three-dimensional trabecular microstructure in the pathogenesis of vertebral compression fractures , 1985, Calcified Tissue International.

[17]  Azriel Rosenfeld,et al.  Digital topology: Introduction and survey , 1989, Comput. Vis. Graph. Image Process..

[18]  Gábor Székely,et al.  Multiscale Medial Loci and Their Properties , 2003, International Journal of Computer Vision.

[19]  Ruzena Bajcsy,et al.  Skeleton-Based Data Compression for Multi-camera Tele-Immersion System , 2007, ISVC.

[20]  Sharmila Majumdar,et al.  Osteoporosis imaging. , 2003, Radiologic clinics of North America.

[21]  Jiann-Der Lee,et al.  Three-Dimensional Topology Preserving Reduction on the 4-Subfields , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Kálmán Palágyi,et al.  A 3D fully parallel surface-thinning algorithm , 2008, Theor. Comput. Sci..

[23]  Péter Kardos,et al.  Thinning combined with iteration-by-iteration smoothing for 3D binary images , 2011, Graph. Model..

[24]  Gabriella Sanniti di Baja,et al.  Computing skeletons in three dimensions , 1999, Pattern Recognit..

[25]  Deborah Silver,et al.  Animating Volumetric Models , 2001, Graph. Model..

[26]  Andrea Tagliasacchi,et al.  3D Skeletons: A State‐of‐the‐Art Report , 2016, Comput. Graph. Forum.

[27]  Bidyut Baran Chaudhuri,et al.  Detection of 3-D Simple Points for Topology Preserving Transformations with Application to Thinning , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  N. Singpurwalla,et al.  Membership Functions and Probability Measures of Fuzzy Sets , 2004 .

[29]  Bidyut Baran Chaudhuri,et al.  A new shape preserving parallel thinning algorithm for 3D digital images , 1997, Pattern Recognit..

[30]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[31]  Punam K. Saha,et al.  Digital Topology and Geometry in Medical Imaging: A Survey , 2015, IEEE Transactions on Medical Imaging.

[32]  Azriel Rosenfeld,et al.  Image enhancement and thresholding by optimization of fuzzy compactness , 1988, Pattern Recognit. Lett..

[33]  Ghassan Hamarneh,et al.  The Groupwise Medial Axis Transform for Fuzzy Skeletonization and Pruning , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Caiming Zhang,et al.  Q-MAT , 2015, ACM Trans. Graph..

[35]  Punam K. Saha,et al.  A New Fuzzy Skeletonization Algorithm and Its Applications to Medical Imaging , 2013, ICIAP.

[36]  Alexandru Telea,et al.  An Unified Multiscale Framework for Planar, Surface, and Curve Skeletonization , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  Punam K. Saha,et al.  A survey on skeletonization algorithms and their applications , 2016, Pattern Recognit. Lett..

[38]  Punam K. Saha,et al.  Volumetric Topological Analysis: A Novel Approach for Trabecular Bone Classification on the Continuum Between Plates and Rods , 2010, IEEE Transactions on Medical Imaging.

[39]  Alexandru Telea,et al.  Surface and Curve Skeletonization of Large 3D Models on the GPU , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Stephen M. Pizer,et al.  Hierarchical Shape Description Via the Multiresolution Symmetric Axis Transform , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[41]  HARRY BLUM,et al.  Shape description using weighted symmetric axis features , 1978, Pattern Recognit..

[42]  Chris Pudney,et al.  Distance-Ordered Homotopic Thinning: A Skeletonization Algorithm for 3D Digital Images , 1998, Comput. Vis. Image Underst..

[43]  Albert Bijaoui,et al.  Astronomical image data compression by morphological skeleton transformation , 1990 .

[44]  Benjamin B. Kimia,et al.  Shapes, shocks, and deformations I: The components of two-dimensional shape and the reaction-diffusion space , 1995, International Journal of Computer Vision.

[45]  Wenyu Liu,et al.  Skeleton Pruning by Contour Partitioning with Discrete Curve Evolution , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[46]  Paul Sajda,et al.  Complete Volumetric Decomposition of Individual Trabecular Plates and Rods and Its Morphological Correlations With Anisotropic Elastic Moduli in Human Trabecular Bone , 2007, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[47]  Bhabatosh Chanda,et al.  Topology preservation in 3D digital space , 1994, Pattern Recognit..

[48]  Isabelle Bloch,et al.  Fuzzy mathematical morphologies: A comparative study , 1995, Pattern Recognit..

[49]  Deborah Silver,et al.  Curve-Skeleton Properties, Applications, and Algorithms , 2007, IEEE Trans. Vis. Comput. Graph..

[50]  Nicholas Ayache,et al.  Topological segmentation of discrete surfaces , 2005, International Journal of Computer Vision.

[51]  D. Lee,et al.  Skeletonization via Distance Maps and Level Sets , 1995 .

[52]  Azriel Rosenfeld,et al.  A fuzzy medial axis transformation based on fuzzy disks , 1991, Pattern Recognit. Lett..

[53]  King-Sun Fu,et al.  A parallel thinning algorithm for 3-D pictures , 1981 .

[54]  Punam K. Saha,et al.  Fuzzy Distance Transform: Theory, Algorithms, and Applications , 2002, Comput. Vis. Image Underst..

[55]  David H. Eberly,et al.  Zoom-Invariant Vision of Figural Shape: The Mathematics of Cores , 1996, Comput. Vis. Image Underst..

[56]  Kaleem Siddiqi,et al.  Hamilton-Jacobi Skeletons , 2002, International Journal of Computer Vision.

[57]  É. Legrand,et al.  Trabecular Bone Microarchitecture, Bone Mineral Density, and Vertebral Fractures in Male Osteoporosis , 2000, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[58]  Alexandru Telea,et al.  Comparison of curve and surface skeletonization methods for voxel shapes , 2014, Pattern Recognit. Lett..

[59]  Stina Svensson Aspects on the reverse fuzzy distance transform , 2008, Pattern Recognit. Lett..

[60]  Gabriella Sanniti di Baja,et al.  Discrete 3D Tools Applied to 2D Grey-Level Images , 2005, ICIAP.

[61]  Sunghee Choi,et al.  The power crust, unions of balls, and the medial axis transform , 2001, Comput. Geom..

[62]  ArcelliCarlo,et al.  Finding local maxima in a pseudo-Euclidean distance transform , 1988 .

[63]  Ingela Nyström,et al.  Synthesising Objects and Scenes Using the Reverse Distance Transformation in 2D and 3D , 1995, ICIAP.

[64]  Punam K. Saha,et al.  Measurement of trabecular bone thickness in the limited resolution regime of in vivo MRI by fuzzy distance transform , 2004, IEEE Transactions on Medical Imaging.

[65]  Gabriella Sanniti di Baja,et al.  A Width-Independent Fast Thinning Algorithm , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[66]  Gabriella Sanniti di Baja,et al.  Distance-Driven Skeletonization in Voxel Images , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[67]  Frederic Fol Leymarie,et al.  Simulating the Grassfire Transform Using an Active Contour Model , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[68]  A. ROSENFELD,et al.  Distance functions on digital pictures , 1968, Pattern Recognit..

[69]  Eric A. Hoffman,et al.  A robust and efficient curve skeletonization algorithm for tree-like objects using minimum cost paths , 2016, Pattern Recognit. Lett..

[70]  Ralph Müller,et al.  Volumetric spatial decomposition of trabecular bone into rods and plates--a new method for local bone morphometry. , 2006, Bone.

[71]  W. Walthen-Dunn A Transformation for Extracting New De scriptors of Shape ' , in , 2017 .

[72]  Jayant Shah,et al.  Extraction of Shape Skeletons from Grayscale Images , 1997, Comput. Vis. Image Underst..

[73]  Hironobu Fujiyoshi,et al.  Real-time human motion analysis by image skeletonization , 1998, Proceedings Fourth IEEE Workshop on Applications of Computer Vision. WACV'98 (Cat. No.98EX201).

[74]  Sven J. Dickinson,et al.  Skeleton based shape matching and retrieval , 2003, 2003 Shape Modeling International..

[75]  P. Choyke,et al.  Gray-scale skeletonization of small vessels in magnetic resonance angiography , 2000, IEEE Transactions on Medical Imaging.

[76]  Cheng Li,et al.  A Robust Algorithm for Thickness Computation at Low Resolution and Its Application to In Vivo Trabecular Bone CT Imaging , 2014, IEEE Transactions on Biomedical Engineering.

[77]  Milan Sonka,et al.  A Fully Parallel 3D Thinning Algorithm and Its Applications , 1996, Comput. Vis. Image Underst..

[78]  Punam K. Saha,et al.  Application of fuzzy skeletonization ot quantitatively assess trabecular bone micro-architecture , 2013, 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[79]  Scott N. Hwang,et al.  Digital Topological Analysis of In Vivo Magnetic Resonance Microimages of Trabecular Bone Reveals Structural Implications of Osteoporosis , 2001, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[80]  Deok-Soo Kim,et al.  A Robust Divide and Conquer Algorithm for Progressive Medial Axes of Planar Shapes , 2016, IEEE Transactions on Visualization and Computer Graphics.

[81]  Yinxiao Liu,et al.  Characterization of trabecular bone plate-rod microarchitecture using multirow detector CT and the tensor scale: Algorithms, validation, and applications to pilot human studies. , 2015, Medical physics.

[82]  Robert L. Ogniewicz,et al.  Discrete Voronoi skeletons , 1992 .