Steady-state non-linear vibrations of plates using Zener material model with fractional derivative

[1]  V. Popov,et al.  Viscoelastic Materials , 2018, Active and Passive Vibration Damping.

[2]  R. Lewandowski,et al.  Geometrically nonlinear, steady state vibration of viscoelastic beams , 2017 .

[3]  M. Ghayesh,et al.  Viscoelastically coupled size-dependent dynamics of microbeams , 2016 .

[4]  M. C. Ray,et al.  Three-dimensional fractional derivative model of smart constrained layer damping treatment for composite plates , 2016 .

[5]  J. Korelc,et al.  On path-following methods for structural failure problems , 2016 .

[6]  Marco Amabili,et al.  Nonlinear vibrations of viscoelastic rectangular plates , 2016 .

[7]  D. Chakraborty,et al.  Piezo-viscoelastically damped nonlinear frequency response of functionally graded plates with a heated plate-surface , 2016 .

[8]  M. C. Ray,et al.  Smart damping of geometrically nonlinear vibrations of functionally graded sandwich plates using 1–3 piezoelectric composites , 2016 .

[9]  Hassan Haddadpour,et al.  The effects of nonlinearities on the vibration of viscoelastic sandwich plates , 2014 .

[10]  S. K. Sarangi,et al.  Nonlinear finite element analysis of smart laminated composite sandwich plates , 2014 .

[11]  M. Ray,et al.  Control of geometrically nonlinear vibrations of skew laminated composite plates using skew or rectangular 1–3 piezoelectric patches , 2013 .

[12]  Erasmo Carrera,et al.  Bending and Vibration of Laminated Plates by a Layerwise Formulation and Collocation with Radial Basis Functions , 2013 .

[13]  M. Ghayesh,et al.  Coupled global dynamics of an axially moving viscoelastic beam , 2013 .

[14]  M. Ghayesh,et al.  Nonlinear dynamics of axially moving viscoelastic beams over the buckled state , 2012 .

[15]  M. Ray,et al.  Active constrained layer damping of geometrically nonlinear vibrations of smart laminated composite sandwich plates using 1–3 piezoelectric composites , 2012 .

[16]  M. Ghayesh Nonlinear dynamic response of a simply-supported Kelvin–Voigt viscoelastic beam, additionally supported by a nonlinear spring , 2012 .

[17]  Roman Lewandowski,et al.  Dynamic analysis of frames with viscoelastic dampers: a comparison of damper models , 2012 .

[18]  M. Ghayesh Nonlinear forced dynamics of an axially moving viscoelastic beam with an internal resonance , 2011 .

[19]  S. K. Sarangi,et al.  Active damping of geometrically nonlinear vibrations of laminated composite plates using vertically reinforced 1-3 piezoelectric composites , 2011 .

[20]  J.-J. Li,et al.  Differential quadrature method for analyzing nonlinear dynamic characteristics of viscoelastic plates with shear effects , 2010 .

[21]  M. Singh,et al.  Mechanical Model Parameters for Viscoelastic Dampers , 2009 .

[22]  I. Podlubny,et al.  Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives , 2005, math-ph/0512028.

[23]  Roger Ohayon,et al.  Finite element formulation of viscoelastic sandwich beams using fractional derivative operators , 2004 .

[24]  Lothar Gaul,et al.  Finite Element Formulation of Viscoelastic Constitutive Equations Using Fractional Time Derivatives , 2002 .

[25]  Ji-Hwan Kim,et al.  Nonlinear vibration of viscoelastic laminated composite plates , 2002 .

[26]  T. Atanacković A modified Zener model of a viscoelastic body , 2002 .

[27]  S. W. Park Analytical modeling of viscoelastic dampers for structural and vibration control , 2001 .

[28]  A. Lion Thermomechanically consistent formulations of the standard linear solid using fractional derivatives , 2001 .

[29]  Roman Lewandowski,et al.  Computational formulation for periodic vibration of geometrically nonlinear structures—part 1: Theoretical background , 1997 .

[30]  Anthony N. Palazotto,et al.  Kelvin-Voigt versus fractional derivative model as constitutive relations for viscoelastic materials , 1995 .

[31]  Michael C. Constantinou,et al.  Fractional‐Derivative Maxwell Model for Viscous Dampers , 1991 .

[32]  Peter Wriggers,et al.  Consistent linearization for path following methods in nonlinear FE analysis , 1986 .

[33]  R. Bagley,et al.  On the Fractional Calculus Model of Viscoelastic Behavior , 1986 .

[34]  R. Bagley,et al.  A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity , 1983 .

[35]  M. Crisfield A FAST INCREMENTAL/ITERATIVE SOLUTION PROCEDURE THAT HANDLES "SNAP-THROUGH" , 1981 .

[36]  A. Gemant,et al.  A Method of Analyzing Experimental Results Obtained from Elasto‐Viscous Bodies , 1936 .

[37]  Z. Pawlak,et al.  Influence of temperature on dynamic characteristics of structures with VE dampers , 2016 .

[38]  M. C. Ray,et al.  Active control of geometrically nonlinear transient vibrations of laminated composite cylindrical panels using piezoelectric fiber reinforced composite , 2013 .

[39]  E. Riks An incremental approach to the solution of snapping and buckling problems , 1979 .