The Block Rational Arnoldi Method
暂无分享,去创建一个
[1] I. Elfadel,et al. A block rational Arnoldi algorithm for multipoint passive model-order reduction of multiport RLC networks , 1997, ICCAD 1997.
[2] A. H. Bentbib,et al. On Some Extended Block Krylov Based Methods for Large Scale Nonsymmetric Stein Matrix Equations , 2017 .
[3] Khalide Jbilou,et al. Block Krylov Subspace Methods for Solving Large Sylvester Equations , 2002, Numerical Algorithms.
[4] Karen Willcox,et al. Model reduction for active control design using multiple-point Arnoldi methods , 2003 .
[5] Khalide Jbilou,et al. An Adaptive Rational Block Lanczos-Type Algorithm for Model Reduction of Large Scale Dynamical Systems , 2016, J. Sci. Comput..
[6] Mario Berljafa,et al. Rational Krylov decompositions : theory and applications , 2017 .
[7] Sebastian Birk,et al. Deflated Shifted Block Krylov Subspace Methods for Hermitian Positive Definite Matrices , 2018 .
[8] V. Simoncini,et al. Preserving geometric properties of the exponential matrix by block Krylov subspace methods , 2006 .
[9] Axel Ruhe. Rational Krylov sequence methods for eigenvalue computation , 1984 .
[10] M. Gutknecht,et al. The block grade of a block Krylov space , 2009 .
[11] Khalide Jbilou,et al. The block Lanczos method for linear systems with multiple right-hand sides , 2004 .
[12] Stefan Güttel,et al. The nonlinear eigenvalue problem∗ , 2017 .
[13] J. Cullum,et al. A block Lanczos algorithm for computing the q algebraically largest eigenvalues and a corresponding eigenspace of large, sparse, real symmetric matrices , 1974, CDC 1974.
[14] R. Freund,et al. Iterative solution of multiple radiation and scattering problems in structural acoustics using a block quasi-minimal residual algorithm , 1997 .
[15] Khalide Jbilou,et al. Block Krylov Subspace Methods for Large Algebraic Riccati Equations , 2003, Numerical Algorithms.
[16] Raf Vandebril,et al. Computing approximate (block) rational Krylov subspaces without explicit inversion with extensions to symmetric matrices , 2014 .
[17] M. Heyouni,et al. AN EXTENDED BLOCK ARNOLDI ALGORITHM FOR LARGE-SCALE SOLUTIONS OF THE CONTINUOUS-TIME ALGEBRAIC RICCATI EQUATI ON ∗ , 2008 .
[18] D. Szyld,et al. Block Krylov Subspace Methods for Functions of Matrices II: Modified Block FOM , 2020, SIAM J. Matrix Anal. Appl..
[19] J. G. Lewis. Algorithms for sparse matrix eigenvalue problems , 1977 .
[20] M. Gutknecht,et al. Block Krylov methods for Hermitian linear systems , 2004 .
[21] Khalide Jbilou,et al. Adaptive rational block Arnoldi methods for model reductions in large-scale MIMO dynamical systems , 2016 .
[22] I. Gel'fand,et al. Determinants of matrices over noncommutative rings , 1991 .
[23] Raf Vandebril,et al. On the Convergence of Rational Ritz Values , 2010, SIAM J. Matrix Anal. Appl..
[24] G. W. Stewart,et al. Matrix algorithms , 1998 .
[25] Helmut Ltkepohl,et al. New Introduction to Multiple Time Series Analysis , 2007 .
[26] Stefan Güttel,et al. The RKFIT Algorithm for Nonlinear Rational Approximation , 2017, SIAM J. Sci. Comput..
[27] Stefan Güttel,et al. Generalized Rational Krylov Decompositions with an Application to Rational Approximation , 2015, SIAM J. Matrix Anal. Appl..
[28] Henri Calandra,et al. A Modified Block Flexible GMRES Method with Deflation at Each Iteration for the Solution of Non-Hermitian Linear Systems with Multiple Right-Hand Sides , 2013, SIAM J. Sci. Comput..
[29] William E. Boyse,et al. A Block QMR Method for Computing Multiple Simultaneous Solutions to Complex Symmetric Systems , 1996, SIAM J. Sci. Comput..
[30] Gene H. Golub,et al. The block Lanczos method for computing eigenvalues , 2007, Milestones in Matrix Computation.
[31] George Cybenko. Restrictions of Normal Operators, Padé Approximation and Autoregressive Time Series , 1984 .
[32] H. Sadok,et al. ALGEBRAIC PROPERTIES OF THE BLOCK GMRES AND BLOCK ARNOLDI METHODS , 2009 .
[33] Heinrich Voss,et al. Nonlinear Eigenvalue Problems , 2012 .
[34] Lei Du,et al. A block IDR(s) method for nonsymmetric linear systems with multiple right-hand sides , 2011, J. Comput. Appl. Math..
[35] Henri Calandra,et al. Flexible Variants of Block Restarted GMRES Methods with Application to Geophysics , 2012, SIAM J. Sci. Comput..
[36] Vladimir Puzyrev,et al. A review of block Krylov subspace methods for multisource electromagnetic modelling , 2015 .
[37] Mei Han An,et al. accuracy and stability of numerical algorithms , 1991 .
[38] Stefan Güttel,et al. A Rational Krylov Toolbox for MATLAB , 2014 .
[39] R. Freund. Krylov-subspace methods for reduced-order modeling in circuit simulation , 2000 .
[40] Bo Zhang,et al. A block rational Krylov method for 3-D time-domain marine controlled-source electromagnetic modelling , 2019, Geophysical Journal International.