4Seasons: A Cross-Season Dataset for Multi-Weather SLAM in Autonomous Driving

We present a novel dataset covering seasonal and challenging perceptual conditions for autonomous driving. Among others, it enables research on visual odometry, global place recognition, and map-based re-localization tracking. The data was collected in different scenarios and under a wide variety of weather conditions and illuminations, including day and night. This resulted in more than 350 km of recordings in nine different environments ranging from multi-level parking garage over urban (including tunnels) to countryside and highway. We provide globally consistent reference poses with up-to centimeter accuracy obtained from the fusion of direct stereo visual-inertial odometry with RTK-GNSS. The full dataset is available at this http URL.

[1]  Jörg Stückler,et al.  The TUM VI Benchmark for Evaluating Visual-Inertial Odometry , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[2]  Daniel Cremers,et al.  A Photometrically Calibrated Benchmark For Monocular Visual Odometry , 2016, ArXiv.

[3]  Jörg Stückler,et al.  Large-scale direct SLAM with stereo cameras , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[4]  Juho Kannala,et al.  A generic camera model and calibration method for conventional, wide-angle, and fish-eye lenses , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Daniel Cremers,et al.  LSD-SLAM: Large-Scale Direct Monocular SLAM , 2014, ECCV.

[6]  Torsten Sattler,et al.  Benchmarking 6DOF Outdoor Visual Localization in Changing Conditions , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[7]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[8]  Ruigang Yang,et al.  The ApolloScape Dataset for Autonomous Driving , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[9]  J. M. M. Montiel,et al.  ORB-SLAM: A Versatile and Accurate Monocular SLAM System , 2015, IEEE Transactions on Robotics.

[10]  Peter I. Corke,et al.  Visual Place Recognition: A Survey , 2016, IEEE Transactions on Robotics.

[11]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[12]  Francisco Angel Moreno,et al.  The Málaga urban dataset: High-rate stereo and LiDAR in a realistic urban scenario , 2014, Int. J. Robotics Res..

[13]  Carlos Jaramillo Direct Multichannel Tracking , 2017, 2017 International Conference on 3D Vision (3DV).

[14]  Andreas Geiger,et al.  Are we ready for autonomous driving? The KITTI vision benchmark suite , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[15]  Daniel Cremers,et al.  Direct Sparse Visual-Inertial Odometry Using Dynamic Marginalization , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[16]  Tomás Pajdla,et al.  NetVLAD: CNN Architecture for Weakly Supervised Place Recognition , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Daniel Cremers,et al.  Multi-Frame GAN: Image Enhancement for Stereo Visual Odometry in Low Light , 2019, CoRL.

[18]  Dorian Gálvez-López,et al.  Bags of Binary Words for Fast Place Recognition in Image Sequences , 2012, IEEE Transactions on Robotics.

[19]  Giorgos Tolias,et al.  Fine-Tuning CNN Image Retrieval with No Human Annotation , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Albert Gordo,et al.  Deep Image Retrieval: Learning Global Representations for Image Search , 2016, ECCV.

[21]  Jean-Arcady Meyer,et al.  Fast and Incremental Method for Loop-Closure Detection Using Bags of Visual Words , 2008, IEEE Transactions on Robotics.

[22]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  Jörg Stückler,et al.  Deep Virtual Stereo Odometry: Leveraging Deep Depth Prediction for Monocular Direct Sparse Odometry , 2018, ECCV.

[24]  Wolfram Burgard,et al.  G2o: A general framework for graph optimization , 2011, 2011 IEEE International Conference on Robotics and Automation.

[25]  Qiang Xu,et al.  nuScenes: A Multimodal Dataset for Autonomous Driving , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[26]  Paul Newman,et al.  1 year, 1000 km: The Oxford RobotCar dataset , 2017, Int. J. Robotics Res..

[27]  Roland Siegwart,et al.  The EuRoC micro aerial vehicle datasets , 2016, Int. J. Robotics Res..

[28]  Andreas Geiger,et al.  Vision meets robotics: The KITTI dataset , 2013, Int. J. Robotics Res..

[29]  Ronan Sicre,et al.  Particular object retrieval with integral max-pooling of CNN activations , 2015, ICLR.

[30]  Wolfram Burgard,et al.  A benchmark for the evaluation of RGB-D SLAM systems , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[31]  Gerard de Haan,et al.  Low Cost Robust Blur Estimator , 2006, 2006 International Conference on Image Processing.

[32]  Andrew J. Davison,et al.  DTAM: Dense tracking and mapping in real-time , 2011, 2011 International Conference on Computer Vision.

[33]  Juan D. Tardós,et al.  ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras , 2016, IEEE Transactions on Robotics.

[34]  Andrew Zisserman,et al.  All About VLAD , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[35]  Richard Bowden,et al.  Same Features, Different Day: Weakly Supervised Feature Learning for Seasonal Invariance , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[36]  Sebastian Ramos,et al.  The Cityscapes Dataset for Semantic Urban Scene Understanding , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[37]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[38]  Gabriela Csurka,et al.  R2D2: Repeatable and Reliable Detector and Descriptor , 2019, ArXiv.

[39]  Torsten Sattler,et al.  D2-Net: A Trainable CNN for Joint Detection and Description of Local Features , 2019, CVPR 2019.

[40]  Min Bai,et al.  TorontoCity: Seeing the World with a Million Eyes , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).

[41]  Cordelia Schmid,et al.  Aggregating local descriptors into a compact image representation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[42]  Daniel Cremers,et al.  Direct Sparse Odometry , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[43]  Roland Siegwart,et al.  Extending kalibr: Calibrating the extrinsics of multiple IMUs and of individual axes , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[44]  Torsten Sattler,et al.  Image Retrieval for Image-Based Localization Revisited , 2012, BMVC.

[45]  Daniel Cremers,et al.  GN-Net: The Gauss-Newton Loss for Multi-Weather Relocalization , 2020, IEEE Robotics and Automation Letters.

[46]  Daniel Cremers,et al.  Stereo DSO: Large-Scale Direct Sparse Visual Odometry with Stereo Cameras , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).