Computing isomorphisms and embeddings of finite fields

Let $\mathbb{F}_q$ be a finite field. Given two irreducible polynomials $f,g$ over $\mathbb{F}_q$, with $\mathrm{deg} f$ dividing $\mathrm{deg} g$, the finite field embedding problem asks to compute an explicit description of a field embedding of $\mathbb{F}_q[X]/f(X)$ into $\mathbb{F}_q[Y]/g(Y)$. When $\mathrm{deg} f = \mathrm{deg} g$, this is also known as the isomorphism problem. This problem, a special instance of polynomial factorization, plays a central role in computer algebra software. We review previous algorithms, due to Lenstra, Allombert, Rains, and Narayanan, and propose improvements and generalizations. Our detailed complexity analysis shows that our newly proposed variants are at least as efficient as previously known algorithms, and in many cases significantly better. We also implement most of the presented algorithms, compare them with the state of the art computer algebra software, and make the code available as open source. Our experiments show that our new variants consistently outperform available software.

[1]  Joachim von zur Gathen,et al.  Modern Computer Algebra , 1998 .

[2]  Leonard M. Adleman,et al.  Finding irreducible polynomials over finite fields , 1986, STOC '86.

[3]  Reynald Lercier,et al.  On Elkies subgroups of ‘ -torsion points in elliptic curves defined over a finite field , 2009 .

[4]  Erich Kaltofen,et al.  On fast multiplication of polynomials over arbitrary algebras , 1991, Acta Informatica.

[5]  B. Mazur,et al.  Arithmetic of Weil curves , 1974 .

[6]  P. L. Montgomery Speeding the Pollard and elliptic curve methods of factorization , 1987 .

[7]  Éric Schost,et al.  Computing the eigenvalue in the schoof-elkies-atkin algorithm using abelian lifts , 2007, ISSAC '07.

[8]  Éric Schost,et al.  Modular Composition Modulo Triangular Sets and Applications , 2013, computational complexity.

[9]  Éric Schost,et al.  Change of order for bivariate triangular sets , 2006, ISSAC '06.

[10]  Larry J. Stockmeyer,et al.  On the Number of Nonscalar Multiplications Necessary to Evaluate Polynomials , 1973, SIAM J. Comput..

[11]  John J. Cannon,et al.  Lattices of Compatibly Embedded Finite Fields , 1997, J. Symb. Comput..

[12]  Victor Shoup,et al.  A New Polynomial Factorization Algorithm and its Implementation , 1995, J. Symb. Comput..

[13]  Reynald Lercier,et al.  Galois invariant smoothness basis , 2007 .

[14]  Preda Mihailescu,et al.  Elliptic Gauss sums and applications to point counting , 2010, J. Symb. Comput..

[15]  E. Kummer Über die Zerlegung der aus Wurzeln der Einheit gebildeten complexen Zahlen in ihre Primfactoren. , 1847 .

[16]  Robert T. Moenck Another polynomial homomorphism , 2004, Acta Informatica.

[17]  Éric Schost,et al.  Fast algorithms for l-adic towers over finite fields , 2013, ISSAC '13.

[18]  William B. Hart,et al.  Fast Library for Number Theory: An Introduction , 2010, ICMS.

[19]  D. Cantor,et al.  A new algorithm for factoring polynomials over finite fields , 1981 .

[20]  Luca De Feo,et al.  Fast Algorithms for Towers of Finite Fields and Isogenies. (Algorithmes Rapides pour les Tours de Corps Finis et les Isogénies) , 2010 .

[21]  W. Waterhouse,et al.  Abelian varieties over finite fields , 1969 .

[22]  Torsion of rational elliptic curves over cubic fields , 2014, 1411.3467.

[23]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[24]  Michael Rosen Abelian Varieties over ℂ , 1986 .

[25]  E. Kummer Über eine besondere Art, aus complexen Einheiten gebildeter Ausdrücke. , 1855 .

[26]  H. T. Kung,et al.  Fast Algorithms for Manipulating Formal Power Series , 1978, JACM.

[27]  Bill Allombert Explicit Computation of Isomorphisms between Finite Fields , 2002 .

[28]  Christopher Umans,et al.  Fast Modular Composition in any Characteristic , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[29]  Éric Schost,et al.  Fast Algorithms for Zero-Dimensional Polynomial Systems using Duality , 2003, Applicable Algebra in Engineering, Communication and Computing.

[30]  Enrique Gonz'alez-Jim'enez Complete classification of the torsion structures of rational elliptic curves over quintic number fields , 2016, 1607.01920.

[31]  R. Zuccherato,et al.  Counting Points on Elliptic Curves Over F2m , 1993 .

[32]  Andrew V. Sutherland,et al.  Torsion subgroups of rational elliptic curves over the compositum of all cubic fields , 2015, Math. Comput..

[33]  E. Noether,et al.  Normalbasis bei Körpern ohne höhere Verzweigung. , 1932 .

[34]  Éric Schost,et al.  Transalpyne: a Language for Automatic Transposition , 2010, ACM Commun. Comput. Algebra.

[35]  D. R. Heath-Brown Zero-free regions for Dirichlet $L$-functions, and the least prime in an arithmetic progression , 1992 .

[36]  Andrew V. Sutherland,et al.  Torsion subgroups of elliptic curves over quintic and sextic number fields , 2016, 1608.07549.

[37]  H. W. Lenstra,et al.  Factoring integers with elliptic curves , 1987 .

[38]  Éric Schost,et al.  Taking roots over high extensions of finite fields , 2011, Math. Comput..

[39]  Éric Schost,et al.  Tellegen's principle into practice , 2003, ISSAC '03.

[40]  Daniel Panario,et al.  Handbook of Finite Fields , 2013, Discrete mathematics and its applications.

[41]  H. Niederreiter,et al.  Finite Fields: Encyclopedia of Mathematics and Its Applications. , 1997 .

[42]  Christopher Umans,et al.  Fast Polynomial Factorization and Modular Composition , 2011, SIAM J. Comput..

[43]  H. Lenstra Finding isomorphisms between finite fields , 1991 .

[44]  Anand Kumar Narayanan Fast Computation of Isomorphisms Between Finite Fields Using Elliptic Curves , 2016, WAIFI.

[45]  Joachim von zur Gathen,et al.  Normal bases via general Gauss periods , 1999, Math. Comput..

[46]  R. Schoof Journal de Theorie des Nombres de Bordeaux 7 (1995), 219{254 , 2022 .

[47]  Erich Kaltofen,et al.  Fast polynomial factorization over high algebraic extensions of finite fields , 1997, ISSAC.

[48]  E. E. Kummer Über die Divisoren gewisser Formen der Zahlen, welche aus der Theorie der Kreistheilung entstehen. , 1846 .

[49]  Wouter Castryck,et al.  The distribution of the number of points modulo an integer on elliptic curves over finite fields , 2009, 0902.4332.

[50]  E. Kummer Über die den Gaußschen Perioden der Kreistheilung entsprechenden Congruenzwurzeln. , 1857 .

[51]  M. V. Hoeij,et al.  Gonality of the modular curve X1(N) , 2013, 1307.5719.

[52]  E. E. Kummer Zur Theorie der complexen Zahlen. , 1847 .

[53]  H. C. Williams,et al.  A $p+1$ method of factoring , 1982 .

[54]  François Le Gall,et al.  Powers of tensors and fast matrix multiplication , 2014, ISSAC.

[55]  R. Lercier,et al.  On Elkies subgroups of $\ell $-torsion points in elliptic curves defined over a finite field , 2008 .

[56]  Victor Shoup Efficient computation of minimal polynomials in algebraic extensions of finite fields , 1999, ISSAC '99.

[57]  Éric Schost,et al.  Fast arithmetic for the algebraic closure of finite fields , 2014, ISSAC.

[58]  Joseph H. Silverman,et al.  The arithmetic of elliptic curves , 1986, Graduate texts in mathematics.

[59]  E. Kaltofen Computer Algebra Algorithms , 1987 .

[60]  V. Shoup New algorithms for finding irreducible polynomials over finite fields , 1990 .

[61]  Joachim von zur Gathen,et al.  Computing Frobenius maps and factoring polynomials , 2005, computational complexity.

[62]  A. Silverberg Contemporary Mathematics Group Order Formulas for Reductions of CM Elliptic Curves , 2010 .

[63]  David Harvey,et al.  Faster polynomial multiplication via multipoint Kronecker substitution , 2007, J. Symb. Comput..

[64]  Victor Shoup,et al.  Fast construction of irreducible polynomials over finite fields , 1994, SODA '93.

[65]  Álvaro Lozano-Robledo On the field of definition of $$p$$-torsion points on elliptic curves over the rationals , 2013 .

[66]  Erich Kaltofen,et al.  Subquadratic-time factoring of polynomials over finite fields , 1998, Math. Comput..