Stream function formulation of surface Stokes equations

In this paper we present a derivation of the surface Helmholtz decomposition, discuss its relation to the surface Hodge decomposition and derive a well-posed stream function formulation of a class of surface Stokes problems. We consider a $C^2$ connected (not necessarily simply connected) oriented hypersurface $\varGamma \subset \mathbb{R}^3$ without boundary. The surface gradient, divergence, curl and Laplace operators are defined in terms of the standard differential operators of the ambient Euclidean space $\mathbb{R}^3$. These representations are very convenient for the implementation of numerical methods for surface partial differential equations. We introduce surface $\mathbf H({\mathop{\rm div}}_{\varGamma})$ and $\mathbf H({\mathop{\rm curl}}_{\varGamma})$ spaces and derive useful properties of these spaces. A main result of the paper is the derivation of the Helmholtz decomposition, in terms of these surface differential operators, based on elementary differential calculus. As a corollary of this decomposition we obtain that for a simply connected surface to every tangential divergence-free velocity field there corresponds a unique scalar stream function. Using this result the variational form of the surface Stokes equation can be reformulated as a well-posed variational formulation of a fourth-order equation for the stream function. The latter can be rewritten as two coupled second-order equations, which form the basis for a finite element discretization. A particular finite element method is explained and the results of a numerical experiment with this method are presented.

[1]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[2]  Charles M. Elliott,et al.  Finite element methods for surface PDEs* , 2013, Acta Numerica.

[3]  Tara E. Brendle Surface Topology , 2011 .

[4]  Padmini Rangamani,et al.  Interaction between surface shape and intra-surface viscous flow on lipid membranes , 2012, Biomechanics and Modeling in Mechanobiology.

[5]  J. Wloka,et al.  Partial differential equations: Strongly elliptic differential operators and the method of variations , 1987 .

[6]  John C. Slattery,et al.  Interfacial Transport Phenomena , 1990 .

[7]  Marius Mitrea,et al.  Navier-Stokes equations on Lipschitz domains in Riemannian manifolds , 2001 .

[8]  J. Wloka,et al.  Partial differential equations , 1987 .

[9]  Maxim A. Olshanskii,et al.  A Trace Finite Element Method for Vector-Laplacians on Surfaces , 2017, SIAM J. Numer. Anal..

[10]  Peter Hansbo,et al.  Analysis of finite element methods for vector Laplacians on surfaces , 2016, IMA Journal of Numerical Analysis.

[11]  Maxim A. Olshanskii,et al.  Incompressible fluid problems on embedded surfaces: Modeling and variational formulations , 2017, Interfaces and Free Boundaries.

[12]  Morton E. Gurtin,et al.  A continuum theory of elastic material surfaces , 1975 .

[13]  Axel Voigt,et al.  Solving the incompressible surface Navier-Stokes equation by surface finite elements , 2017, 1709.02803.

[14]  Axel Voigt,et al.  The Interplay of Curvature and Vortices in Flow on Curved Surfaces , 2014, Multiscale Model. Simul..

[15]  Loring W. Tu,et al.  Differential forms in algebraic topology , 1982, Graduate texts in mathematics.

[16]  Antonio DeSimone,et al.  Curved fluid membranes behave laterally as effective viscoelastic media , 2013 .

[17]  Yoshikazu Giga,et al.  Energetic variational approaches for incompressible fluid systems on an evolving surface , 2016 .

[18]  Patrick Ciarlet,et al.  On traces for functional spaces related to Maxwell's equations Part II: Hodge decompositions on the boundary of Lipschitz polyhedra and applications , 2001 .

[19]  I. Holopainen Riemannian Geometry , 1927, Nature.

[20]  Howard Brenner,et al.  Interfacial transport processes and rheology , 1991 .

[21]  Arnold Reusken,et al.  A Higher Order Finite Element Method for Partial Differential Equations on Surfaces , 2016, SIAM J. Numer. Anal..

[22]  Charles M. Elliott,et al.  Finite elements on evolving surfaces , 2007 .

[23]  T.G.M. van de Ven,et al.  Interfacial transport processes and rheology , 1993 .

[24]  Mikio Nakahara,et al.  Hamilton Dynamics on Clifford Kaehler Manifolds , 2009, 0902.4076.

[25]  J. Thorpe Elementary Topics in Differential Geometry , 1979 .

[26]  Michael E. Taylor,et al.  Analysis on Morrey Spaces and Applications to Navier-Stokes and Other Evolution Equations , 1992 .

[27]  R. Temam Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .

[28]  I. Nitschke,et al.  A finite element approach to incompressible two-phase flow on manifolds , 2012, Journal of Fluid Mechanics.

[29]  Maxim A. Olshanskii,et al.  A Finite Element Method for Elliptic Equations on Surfaces , 2009, SIAM J. Numer. Anal..

[30]  Maxim A. Olshanskii,et al.  A Finite Element Method for the Surface Stokes Problem , 2018, SIAM J. Sci. Comput..

[31]  M. Cessenat MATHEMATICAL METHODS IN ELECTROMAGNETISM: LINEAR THEORY AND APPLICATIONS , 1996 .

[32]  Arnold Reusken,et al.  Numerical simulation of incompressible two‐phase flows with a Boussinesq–Scriven interface stress tensor , 2013 .

[33]  Marino Arroyo,et al.  Relaxation dynamics of fluid membranes. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  I. Madsen,et al.  From Calculus to Cohomology: De Rham Cohomology and Characteristic Classes , 1997 .

[35]  Manfredo P. do Carmo,et al.  Differential geometry of curves and surfaces , 1976 .

[36]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[37]  L. Scriven,et al.  Dynamics of a fluid interface Equation of motion for Newtonian surface fluids , 1960 .

[38]  Thomas-Peter Fries,et al.  Higher‐order surface FEM for incompressible Navier‐Stokes flows on manifolds , 2017, ArXiv.

[39]  R. Abraham,et al.  Manifolds, Tensor Analysis, and Applications , 1983 .

[40]  W. Kühnel Differential Geometry: Curves - Surfaces - Manifolds , 2002 .

[41]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[42]  Harald Garcke,et al.  A stable numerical method for the dynamics of fluidic membranes , 2016, Numerische Mathematik.

[43]  C. B. Morrey Multiple Integrals in the Calculus of Variations , 1966 .

[44]  Marc Arnaudon,et al.  Lagrangian Navier–Stokes diffusions on manifolds: Variational principle and stability , 2010 .

[45]  Tatsu-Hiko Miura,et al.  On singular limit equations for incompressible fluids in moving thin domains , 2017, 1703.09698.

[46]  J. Marsden,et al.  Groups of diffeomorphisms and the motion of an incompressible fluid , 1970 .