A Coupled Newton-Krylov Time Spectral Solver for Wing Flutter and LCO Prediction

Flutter onset characteristic is an important consideration for transport aircraft design. Previous work with high fidelity aerostructural optimization has shown a tendency for optimization algorithms to produce unrealistically high aspect ratio designs, particularly when maximizing range or minimizing fuel burn, in an effort to maximize aerodynamic efficiency. In this work, we propose an efficient high fidelity flutter solution method. The flow and the structural dynamics have been modeled with time-spectral (TS) method. The TS method is designed to capture the dominant modes of periodic behaviors efficiently. We develop a coupled Newton–Krylov solver to solve this motion-fluid-structure coupled problem. In the literature, Newton-based TS flutter methods have been proposed in a segregated form. In the current work, the whole coupled system is directly solved. By doing so, one motion-fluid-structure solution is required instead ofO(NCSD)×O(Niter) CFD solutions where NCSD is the structural degree-of-freedom for all time instances andNiter is the number of Newton steps. We demonstrate the method on the classic AGARD 445.6 case.

[1]  Joaquim R. R. A. Martins,et al.  A Jacobian-free approximate Newton-Krylov startup strategy for RANS simulations , 2019, J. Comput. Phys..

[2]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[3]  Graeme J. Kennedy,et al.  Scalable Parallel Approach for High-Fidelity Steady-State Aeroelastic Analysis and Adjoint Derivative Computations , 2014 .

[4]  Mark Drela,et al.  Towards a Low-Order Model for Transonic Flutter Prediction , 2017 .

[5]  Weiwei Zhang,et al.  Deep neural network for unsteady aerodynamic and aeroelastic modeling across multiple Mach numbers , 2019, Nonlinear Dynamics.

[6]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[7]  M. Gibbons,et al.  Aeroelastic Calculations Using CFD for a Typical Business Jet Model , 1996 .

[8]  Joaquim R. R. A. Martins,et al.  Multipoint High-Fidelity Aerostructural Optimization of a Transport Aircraft Configuration , 2014 .

[9]  Kivanc Ekici,et al.  Aeroelastic Modeling of a Three-Dimensional Wing Using the Harmonic-Balance-Based One-shot Method , 2019, AIAA Scitech 2019 Forum.

[10]  Joaquim R. R. A. Martins,et al.  Effective adjoint approaches for computational fluid dynamics , 2019, Progress in Aerospace Sciences.

[11]  Jeffrey P. Thomas,et al.  Nonlinear Inviscid Aerodynamic Effects on Transonic Divergence, Flutter, and Limit-Cycle Oscillations , 2001 .

[12]  E. Carson Yates,et al.  AGARD standard aeroelastic configurations for dynamic response. Candidate configuration I.-wing 445.6 , 1987 .

[13]  Joaquim R. R. A. Martins,et al.  Flutter and post-flutter constraints in aircraft design optimization , 2019, Progress in Aerospace Sciences.

[14]  Homer F. Walker,et al.  Choosing the Forcing Terms in an Inexact Newton Method , 1996, SIAM J. Sci. Comput..

[15]  Joaquim R. R. A. Martins,et al.  A coupled Newton-Krylov time spectral solver for flutter prediction , 2018 .

[16]  Antony Jameson,et al.  Time Spectral Method for Periodic Unsteady Computations over Two- and Three- Dimensional Bodies , 2005 .

[17]  Dimitri J. Mavriplis,et al.  Quasi-periodic Time Spectral Method for Aeroelastic Flutter Analysis , 2013 .

[18]  Joaquim R. R. A. Martins,et al.  Computational Modeling of Flutter Constraint for High-Fidelity Aerostructural Optimization , 2019, AIAA Scitech 2019 Forum.

[19]  Robert A. Canfield,et al.  ASTROS - A multidisciplinary automated structural design tool , 1987 .

[20]  Antony Jameson,et al.  The computational efficiency of non-linear frequency domain methods , 2006, J. Comput. Phys..

[21]  Max M. J. Opgenoord,et al.  Influence of Transonic Flutter on the Conceptual Design of Next-Generation Transport Aircraft , 2018, AIAA Journal.

[22]  D. Keyes,et al.  Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .

[23]  Her Mann Tsai,et al.  Calculation of Wing Flutter by a Coupled Fluid-Structure Method , 2001 .

[24]  Joaquim R. R. A. Martins,et al.  High-fidelity aerostructural optimization considering buffet onset , 2015 .

[25]  Robert M. Bennett,et al.  Recent advances in transonic computational aeroelasticity , 1988 .

[26]  Yousef Saad,et al.  Hybrid Krylov Methods for Nonlinear Systems of Equations , 1990, SIAM J. Sci. Comput..

[27]  Earl H. Dowell,et al.  A HARMONIC BALANCE APPROACH FOR MODELING THREE-DIMENSIONAL NONLINEAR UNSTEADY AERODYNAMICS AND AEROELASTICITY , 2002 .

[28]  Timothy R. Brooks,et al.  Benchmark Aerostructural Models for the Study of Transonic Aircraft Wings , 2018, AIAA Journal.

[29]  Hang Li,et al.  A novel approach for flutter prediction of pitch–plunge airfoils using an efficient one-shot method , 2018, Journal of Fluids and Structures.

[30]  W. Rodden,et al.  A doublet-lattice method for calculating lift distributions on oscillating surfaces in subsonic flows. , 1969 .

[31]  Jeffrey P. Thomas,et al.  Computation of Unsteady Nonlinear Flows in Cascades Using a Harmonic Balance Technique , 2002 .

[32]  Siva Nadarajah,et al.  Aeroelastic Solutions Using the Nonlinear Frequency-Domain Method , 2008 .

[33]  John T. Batina,et al.  Unsteady Transonic Flow Calculations for Realistic Aircraft Configurations , 1989 .

[34]  Joaquim R. R. A. Martins,et al.  Aerodynamic Shape Optimization with Time Spectral Flutter Adjoint , 2019, AIAA Scitech 2019 Forum.

[35]  Earl H. Dowell,et al.  A Fixed Point Iteration Approach for Harmonic Balance Based Aeroelastic Computations , 2018 .

[36]  H. J. Cunningham,et al.  Wing flutter calculations with the CAP-TSD unsteady transonic small disturbance program , 1988 .

[37]  William Gropp,et al.  Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.

[38]  M. McMullen,et al.  The application of non-linear frequency domain methods to the Euler and Navier-Stokes equations , 2003 .