R-parameter: A local truncation error based adaptive framework for finite volume compressible flow solvers

A residual-based strategy to estimate the local truncation error in a finite volume framework for steady compressible flows is proposed. This estimator, referred to as the -parameter, is derived from the imbalance arising from the use of an exact operator on the numerical solution for conservation laws. The behaviour of the residual estimator for linear and non-linear hyperbolic problems is systematically analysed. The relationship of the residual to the global error is also studied. The -parameter is used to derive a target length scale and consequently devise a suitable criterion for refinement/derefinement. This strategy, devoid of any user-defined parameters, is validated using two standard test cases involving smooth flows. A hybrid adaptive strategy based on both the error indicators and the -parameter, for flows involving shocks is also developed. Numerical studies on several compressible flow cases show that the adaptive algorithm performs excellently well in both two and three dimensions.

[1]  Y. Kallinderis,et al.  Adaptation methods for a new Navier-Stokes algorithm , 1989 .

[2]  Alexander Kurganov,et al.  A Smoothness Indicator for Adaptive Algorithms for Hyperbolic Systems , 2002 .

[3]  Christophe Eric Corre,et al.  Residual-based compact schemes for multidimensional hyperbolic systems of conservation laws , 2002 .

[4]  N. Balakrishnan,et al.  Cartesian-like grids using a novel grid-stitching algorithm for viscous flow computations , 2007 .

[5]  Hrvoje Jasak,et al.  Error analysis and estimation for the finite volume method with applications to fluid flows , 1996 .

[6]  C. Hirsch,et al.  Numerical Computation of Internal and External Flows. By C. HIRSCH. Wiley. Vol. 1, Fundamentals of Numerical Discretization. 1988. 515 pp. £60. Vol. 2, Computational Methods for Inviscid and Viscous Flows. 1990, 691 pp. £65. , 1991, Journal of Fluid Mechanics.

[7]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[8]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[9]  J. Trépanier,et al.  Error Estimator and Adaptive Moving Grids for Finite Volumes Schemes , 1995 .

[10]  N. Balakrishnan,et al.  Wall boundary conditions for inviscid compressible flows on unstructured meshes , 1998 .

[11]  Dominique Pelletier,et al.  Numerical Assessment of Error Estimators for Euler Equations , 2001 .

[12]  D. Gaitonde,et al.  Behavior of linear reconstruction techniques on unstructured meshes , 1995 .

[13]  S. Rebay,et al.  High-Order Accurate Discontinuous Finite Element Solution of the 2D Euler Equations , 1997 .

[14]  Gregory Allan Ashford,et al.  An unstructured grid generation and adaptive solution technique for high Reynolds number compressible flows. , 1996 .

[15]  K. W. Morton,et al.  Spurious entropy generation as a mesh quality indicator , 1995 .

[16]  D. D. Zeeuw,et al.  An adaptively refined Cartesian mesh solver for the Euler equations , 1993 .

[17]  Jean-Antoine Désidéri,et al.  Hypersonic flows for reentry problems , 1991 .

[18]  R. LeVeque Numerical methods for conservation laws , 1990 .

[19]  T. J. Barth,et al.  A 3-D least-squares upwind Euler solver for unstructured meshes , 1993 .

[20]  V. Venkatakrishnan Convergence to steady state solutions of the Euler equations on unstructured grids with limiters , 1995 .

[21]  H. Lomax,et al.  Thin-layer approximation and algebraic model for separated turbulent flows , 1978 .

[22]  Michel Visonneau,et al.  Adaptive finite-volume solution of complex turbulent flows , 2007 .

[23]  M Delanaye,et al.  An accurate finite volume scheme for Euler and Navier-Stokes equations on unstructured adaptive grids , 1995 .

[24]  D. Venditti,et al.  Adjoint error estimation and grid adaptation for functional outputs: application to quasi-one-dimensional flow , 2000 .

[25]  H. Kamath,et al.  A high-resolution procedure for Euler and Navier-Stokes computations on unstructured grids , 2000 .

[26]  Scott Northrup,et al.  Solution of Laminar Combusting Flows Using a Parallel Implicit Adaptive Mesh Refinement Algorithm , 2009 .

[27]  Michael J. Aftosmis,et al.  Multilevel Error Estimation and Adaptive h-Refinement for Cartesian Meshes with Embedded Boundaries , 2002 .

[28]  Christophe Eric Corre,et al.  A residual-based compact scheme for the compressible Navier-Stokes equations , 2001 .

[29]  Michael B. Giles,et al.  Adjoint Recovery of Superconvergent Functionals from PDE Approximations , 2000, SIAM Rev..

[30]  O. C. Zienkiewicz,et al.  Adaptive remeshing for compressible flow computations , 1987 .

[31]  R. Verfürth A review of a posteriori error estimation techniques for elasticity problems , 1999 .

[32]  M. Sun,et al.  Error localization in solution-adaptive grid methods , 2003 .

[33]  D. Holmes,et al.  Solution of the 2D Navier-Stokes equations on unstructured adaptive grids , 1989 .

[34]  F. White Viscous Fluid Flow , 1974 .

[35]  Henri Paillere,et al.  A wave-model-based refinement criterion for adaptive-grid computation of compressible flows , 1992 .

[36]  Narayanaswamy Balakrishnan,et al.  An upwind finite difference scheme for meshless solvers , 2003 .

[37]  N. Balakrishnan,et al.  New Migratory Memory Algorithm for Implicit Finite Volume Solvers , 2004 .

[38]  V. Schmitt,et al.  Pressure distributions on the ONERA M6 wing at transonic Mach numbers , 1979 .

[39]  Alexander Hay,et al.  Adaptive mesh strategy applied to turbulent flows , 2005 .

[40]  N. Weatherill,et al.  The simulation of inviscid, compressible flows using an upwind kinetic method on unstructured grids , 1992 .

[41]  N. Balakrishnan,et al.  An Embedded Grid Adaptation Strategy for Unstructured Data Based Finite Volume Computations , 2003 .

[42]  Michael L. Norman,et al.  Achieving Extreme Resolution in Numerical Cosmology Using Adaptive Mesh Refinement: Resolving Primordial Star Formation , 2001, ACM/IEEE SC 2001 Conference (SC'01).

[43]  Kazuyoshi Takayama,et al.  Conservative Smoothing on an Adaptive Quadrilateral Grid , 1999 .

[44]  V. Venkatakrishnan,et al.  Viscous computations using a direct solver , 1990 .

[45]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[46]  Mark Sussman,et al.  A parallelized, adaptive algorithm for multiphase flows in general geometries , 2005 .

[47]  Solving Flow Equations for High Mach Numbers on Overlapping Grids , 1991 .

[48]  R. Löhner An adaptive finite element scheme for transient problems in CFD , 1987 .

[49]  N. Balakrishnan,et al.  A Novel mesh refinement/coarsening algorithm for compressible flows , 2006 .

[50]  N. V. Raghavendra,et al.  3-D Grid Adaptation Using a Sensor Based on Directed Divergence Between Maxwellians , 2001 .

[51]  Y. Kallinderis,et al.  Directional Viscous Multigrid Using Adaptive Prismatic Meshes , 1995 .

[52]  Rainald Löhner,et al.  Mesh adaptation in fluid mechanics , 1995 .

[53]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[54]  Daniel C. Haworth,et al.  Adaptive grid refinement using cell-level and global imbalances , 1997 .

[55]  Darren L. de Zeeuw,et al.  Euler calculations of axisymmetric under-expanded jets by an adaptive-refinement method , 1992 .

[56]  P. Colella,et al.  A Conservative Adaptive Projection Method for the Variable Density Incompressible Navier-Stokes Equations , 1998 .

[57]  D. Venditti,et al.  Grid adaptation for functional outputs: application to two-dimensional inviscid flows , 2002 .

[58]  Gabriella Puppo,et al.  Numerical Entropy Production for Central Schemes , 2003, SIAM J. Sci. Comput..

[59]  M. Visonneau,et al.  Error estimation using the error transport equation for finite-volume methods and arbitrary meshes , 2006 .

[60]  Alexander Kurganov,et al.  Local error analysis for approximate solutions of hyperbolic conservation laws , 2005, Adv. Comput. Math..