Acoustical properties of materials made of vegetable particles with several scales of porosity

Abstract This article is devoted to the acoustical properties of hemp concrete, a “green” building material. In the study, hemp concretes made of different binders and different kinds of particles were characterised, and then modeled using equivalent-fluid models. Further, it is shown that the sound absorption of these materials can be controlled and significantly enhanced by means of suitable constituents and fabrication processes. Finally, good results are provided by the models.

[1]  Yvan Champoux,et al.  Dynamic tortuosity and bulk modulus in air‐saturated porous media , 1991 .

[2]  C. Zwikker,et al.  Sound Absorbing Materials , 1949 .

[3]  M. Biot Theory of Propagation of Elastic Waves in a Fluid‐Saturated Porous Solid. I. Low‐Frequency Range , 1956 .

[4]  Morgan,et al.  Drag forces of porous-medium acoustics. , 1993, Physical review. B, Condensed matter.

[5]  Han-Seung Yang,et al.  Rice straw-wood particle composite for sound absorbing wooden construction materials. , 2003, Bioresource technology.

[6]  Seung-Bum Park,et al.  Studies on the sound absorption characteristics of porous concrete based on the content of recycled aggregate and target void ratio , 2005 .

[7]  M. Biot Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range , 1956 .

[8]  Joel Koplik,et al.  Theory of dynamic permeability and tortuosity in fluid-saturated porous media , 1987, Journal of Fluid Mechanics.

[9]  Franck Sgard,et al.  Acoustic absorption of macro-perforated porous materials , 2001 .

[10]  Kirill V. Horoshenkov,et al.  Acoustic absorption in re-cycled rubber granulate , 1999 .

[11]  Leo L. Beranek,et al.  Acoustic Impedance of Porous Materials , 1942 .

[12]  Simon N. Chandler-Wilde,et al.  Padé approximants for the acoustical properties of rigid frame porous media with pore size distributions , 1998 .

[13]  Denis Lafarge,et al.  Dynamic compressibility of air in porous structures at audible frequencies , 1997 .

[14]  Keith Attenborough,et al.  On the acoustic slow wave in air-filled granular media , 1987 .

[15]  Yvan Champoux,et al.  Propagation of sound and the assignment of shape factors in model porous materials having simple pore geometries , 1992 .

[16]  K. Horoshenkov,et al.  Comparison of two modeling approaches for highly heterogeneous porous media. , 2007, The Journal of the Acoustical Society of America.

[17]  V. Cerezo,et al.  Propriétés mécaniques, thermiques et acoustiques d'un matériau à base de particules végétales : approche expérimentale et modélisation théorique , 2005 .

[18]  Claude Boutin,et al.  Acoustic wave propagation in double porosity media. , 2003, The Journal of the Acoustical Society of America.

[19]  Kirill V. Horoshenkov,et al.  Impact sound insulation and viscoelastic properties of underlay manufactured from recycled carpet waste , 2005 .

[20]  A. Laukaitis,et al.  Acoustical properties of aerated autoclaved concrete , 2006 .

[21]  Kirill V. Horoshenkov,et al.  A new empirical model for the acoustic properties of loose granular media , 2003 .

[22]  E. N. Bazley,et al.  Acoustical properties of fibrous absorbent materials , 1970 .

[23]  J. F. Allard,et al.  Propagation of sound in porous media , 1993 .

[24]  C. Boutin,et al.  Estimates and bounds of dynamic permeability of granular media. , 2008, The Journal of the Acoustical Society of America.

[25]  Yvan Champoux,et al.  On acoustical models for sound propagation in rigid frame porous materials and the influence of shape factors , 1992 .

[26]  Con Wassilieff,et al.  Sound absorption of wood-based materials , 1996 .