Effect of Boundary Layers on Polycrystalline Silicon Chemical Vapor Deposition in a Trichlorosilane and Hydrogen System

This paper presents the numerical investigation of the effects of momentum, thermal and species boundary layers on the characteristics of polycrystalline silicon deposition by comparing the deposition rates in three chemical vapor deposition (CVD) reactors. A two-dimensional model for the gas flow, heat transfer, and mass transfer was coupled to the gas-phase reaction and surface reaction mechanism for the deposition of polycrystalline silicon from trichlorosilane (TCS)-hydrogen system. The model was verified by comparing the simulated growth rate with the experimental and numerical data in the open literature. Computed results in the reactors indicate that the deposition characteristics are closely related to the momentum, thermal and mass boundary layer thickness. To yield higher deposition rate, there should be higher concentration of TCS gas on the substrate, and there should also be thinner boundary layer of HCl gas so that HCl gas could be pushed away from the surface of the substrate immediately.

[1]  Qiaoqin Yang,et al.  Nucleation and growth of diamond on titanium silicon carbide by microwave plasma-enhanced chemical vapor deposition , 2006 .

[2]  John N. Shadid,et al.  Computational Analysis and Optimization of a Chemical Vapor Deposition Reactor with Large-Scale Computing , 2004 .

[3]  Maurizio Masi,et al.  Reduced order model for the CVD of epitaxial silicon from silane and chlorosilanes , 2001 .

[4]  K. Okuyama,et al.  Chemical process of silicon epitaxial growth in a SiHCl3-H2 system , 1999 .

[5]  Koichi Kuroiwa,et al.  Investigation on Leakage Current Reduction of Photo‐CVD Tantalum Oxide Films Accomplished by Active Oxygen Annealing , 1992 .

[6]  S. Vanka,et al.  Parametric effects on thin film growth and uniformity in an atmospheric pressure impinging jet CVD reactor , 2004 .

[7]  Weigang Zhang,et al.  Kinetic and Microstructure of SiC Deposited from SiCl4-CH4-H2 , 2009 .

[8]  Richard Pollard,et al.  A Mathematical Model for Chemical Vapor Deposition Processes Influenced by Surface Reaction Kinetics: Application to Low‐Pressure Deposition of Tungsten , 1991 .

[9]  Jianzhong Lin,et al.  Numerical simulation of nanoparticle synthesis in diffusion flame reactor , 2008 .

[10]  Y. Makarov,et al.  Convection-assisted chemical vapor deposition (CoCVD) of silicon on large-area substrates , 2008 .

[11]  Khalil Khanafer,et al.  Computational modeling of transport phenomena in chemical vapor deposition , 2005 .

[12]  P. Ho,et al.  Chemical Kinetics for Modeling Silicon Epitaxy from Chlorosilanes , 1998 .

[13]  Hitoshi Habuka,et al.  Model on transport phenomena and epitaxial growth of silicon thin film in SiHCl3H2 system under atmospheric pressure , 1996 .

[14]  S. Kommu,et al.  High-Volume Single-Wafer Reactors for Silicon Epitaxy , 2002 .

[15]  Klavs F. Jensen,et al.  Three‐Dimensional Flow Effects in Silicon CVD in Horizontal Reactors , 1988 .

[16]  R. Mills,et al.  Role of atomic hydrogen density and energy in low power chemical vapor deposition synthesis of diamond films , 2005 .

[17]  John N. Shadid,et al.  Analysis of gallium arsenide deposition in a horizontal chemical vapor deposition reactor using massively parallel computations , 1999 .

[18]  E. Grulke,et al.  CFD Analysis on a Vortex Enhanced CVD Reactor Design , 2001 .

[19]  Kyoung-Woo Park, Hi-Yong Pak,et al.  CHARACTERISTICS OF THREE-DIMENSIONAL FLOW, HEAT, AND MASS TRANSFER IN A CHEMICAL VAPOR DEPOSITION REACTOR , 2000 .

[20]  Robert J. Kee,et al.  A Mathematical Model of Silicon Chemical Vapor Deposition Further Refinements and the Effects of Thermal Diffusion , 1986 .

[21]  T. Cheng,et al.  Computation of three-dimensional flow and thermal fields in a model horizontal chemical vapor deposition reactor , 2006 .

[22]  Kozo Saito,et al.  CFD prediction of carbon nanotube production rate in a CVD reactor , 2004 .

[23]  Modelling of transport phenomena in a low-pressure CVD reactor , 2004 .

[24]  Gerold W. Neudeck,et al.  Mathematical Modeling of Epitaxial Silicon Growth in Pancake Chemical Vapor Deposition Reactors , 1991 .

[25]  K. J. Kuijlaars,et al.  Multi-scale modeling of chemical vapor deposition processes for thin film technology , 2007 .

[26]  Deepak G. Bhat,et al.  A review of Handbook of Chemical Vapor Deposition Principles, Technology, and Applications by Hugh. O. Pierson To obtain contact: Noyes Publications 120 Mill Road Park Ridge, NJ 07658 436 pages , 1994 .

[27]  R. J. Kee,et al.  Chemkin-II : A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics , 1991 .

[28]  Chris R. Kleijn,et al.  On turbulent flows in cold-wall CVD reactors , 2000 .

[29]  Akinori Oda,et al.  Numerical analysis of pressure dependence on carbon nanotube growth in CH4/H2 plasmas , 2008 .

[30]  Xiaodang Zhang,et al.  Effect of substrate bias on the plasma enhanced chemical vapor deposition of microcrystalline silicon thin films , 2008 .

[31]  M. Sharif,et al.  EFFECTS OF THERMAL DIFFUSION AND SUBSTRATE TEMPERATURE ON SILICON DEPOSITION IN AN IMPINGING-JET CVD REACTOR , 2003 .

[32]  E. Pfender,et al.  The effects of substrate rotation on thermal plasma chemical vapor deposition of diamond , 2001 .

[33]  Stephen B. Pope,et al.  Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation , 1997 .

[34]  Effect of substrate geometry on the deposition rate in chemical vapor deposition , 2007 .

[35]  S. Vanka,et al.  Fluid flow and transport processes in a large area atmospheric pressure stagnation flow CVD reactor for deposition of thin films , 2004 .

[36]  Antonio Luque,et al.  Chemical Vapor Deposition Model of Polysilicon in a Trichlorosilane and Hydrogen System , 2008 .

[37]  M. Aihara,et al.  Dominant rate process of silicon surface etching by hydrogen chloride gas , 2005 .

[38]  Robert J. Kee,et al.  A Mathematical Model of the Fluid Mechanics and Gas‐Phase Chemistry in a Rotating Disk Chemical Vapor Deposition Reactor , 1989 .

[39]  Tsarng Sheng Cheng,et al.  Numerical investigations of geometric effects on flow and thermal fields in a horizontal CVD reactor , 2008 .

[40]  Aiying Wang,et al.  Simulations of the Dependence of Gas Physical Parameters on Deposition Variables during HFCVD Diamond Films , 2006 .

[41]  Chris R. Kleijn,et al.  Computational modeling of transport phenomena and detailed chemistry in chemical vapor deposition : a benchmark solution , 2000 .

[42]  Willem Hundsdorfer,et al.  RKC time-stepping for advection-diffusion-reaction problems , 2004 .

[43]  M. Gunner,et al.  Exploring the energy landscape for Q(A)(-) to Q(B) electron transfer in bacterial photosynthetic reaction centers: effect of substrate position and tail length on the conformational gating step. , 2002, Biochemistry.