Solar cell parameters extraction using particle swarm optimization algorithm

This paper presents an application of particle swarm optimization (PSO) technique for extracting the parameters of single diode solar cell model. The proposed technique is used to estimate five different model parameters; namely, generated photocurrent, saturation current, series resistance, shunt resistance and ideality factor that govern the current-voltage relationship of a solar cell. A measurement data of 57 mm diameter commercial (R.T.C. France) silicon solar cell is used to test and verify the consistency of accurately estimating various parameters. The effectiveness of the proposed method is compared with the results found by the other parameter estimation techniques.

[1]  T. Easwarakhanthan,et al.  Nonlinear Minimization Algorithm for Determining the Solar Cell Parameters with Microcomputers , 1986 .

[2]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[3]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[4]  Russell C. Eberhart,et al.  Parameter Selection in Particle Swarm Optimization , 1998, Evolutionary Programming.

[5]  R. Eberhart,et al.  Empirical study of particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[6]  Saman K. Halgamuge,et al.  Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients , 2004, IEEE Transactions on Evolutionary Computation.

[7]  Russell C. Eberhart,et al.  Recent advances in particle swarm , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[8]  Salman Mohagheghi,et al.  Particle Swarm Optimization: Basic Concepts, Variants and Applications in Power Systems , 2008, IEEE Transactions on Evolutionary Computation.

[9]  A. Sellami,et al.  Identification of PV solar cells and modules parameters using the genetic algorithms: Application to maximum power extraction , 2010 .

[10]  Huang Wei,et al.  Extracting solar cell model parameters based on chaos particle swarm algorithm , 2011, 2011 International Conference on Electric Information and Control Engineering.

[11]  Azzedine Zerguine,et al.  A new modified particle swarm optimization algorithm for adaptive equalization , 2011, Digit. Signal Process..

[12]  A. K. Al-Othman,et al.  Simulated Annealing algorithm for photovoltaic parameters identification , 2012 .

[13]  Guo Bao-long,et al.  Empirical Study of the Inertia Weight Particle Swarm Optimization with Constraint Factor , 2012 .

[14]  Alireza Rezazadeh,et al.  Parameter identification for solar cell models using harmony search-based algorithms , 2012 .

[15]  Alireza Rezazadeh,et al.  Artificial bee swarm optimization algorithm for parameters identification of solar cell models , 2013 .

[16]  Qiang Sun,et al.  Impulse Engine Ignition Algorithm Based on Genetic Particle Swarm Optimization , 2013, ICSI.

[17]  Anula Khare,et al.  A review of particle swarm optimization and its applications in Solar Photovoltaic system , 2013, Appl. Soft Comput..

[18]  Ashish K. Panchal,et al.  Solar Cell Parameters Extraction from a Current- Voltage Characteristic Using Genetic Algorithm , 2013 .