A Constant-Potential Infeasible-Start Interior-Point Algorithm with Computational Experiments and Applications

We present a constant-potential infeasible-start interior-point (INFCP) algorithm for linear programming (LP) problems with a worst-case iteration complexity analysis as well as some computational results.The performance of the INFCP algorithm is compared to those of practical interior-point algorithms. New features of the algorithm include a heuristic method for computing a “good” starting point and a procedure for solving the augmented system arising from stochastic programming with simple recourse. We also present an application to large scale planning problems under uncertainty.

[1]  Sanjay Mehrotra,et al.  Solving symmetric indefinite systems in an interior-point method for linear programming , 1993, Math. Program..

[2]  William W.-G. Yeh,et al.  Reservoir Management and Operations Models: A State‐of‐the‐Art Review , 1985 .

[3]  Shinji Mizuno,et al.  A polynomial-time algorithm for a class of linear complementarity problems , 1989, Math. Program..

[4]  Sanjay Mehrotra,et al.  On the Implementation of a Primal-Dual Interior Point Method , 1992, SIAM J. Optim..

[5]  Sanjay Mehrotra,et al.  A Study of the Augmented System and Column-Splitting Approaches for Solving Two-Stage Stochastic Linear Programs by Interior-Point Methods , 1995, INFORMS J. Comput..

[6]  Shinji Mizuno,et al.  A primal—dual infeasible-interior-point algorithm for linear programming , 1993, Math. Program..

[7]  George B. Dantzig,et al.  Parallel processors for planning under uncertainty , 1990 .

[8]  Shinji Mizuno,et al.  Infeasible-Interior-Point Primal-Dual Potential-Reduction Algorithms for Linear Programming , 1995, SIAM J. Optim..

[9]  R. Vanderbei LOQO:an interior point code for quadratic programming , 1999 .

[10]  R. Tyrrell Rockafellar,et al.  Scenarios and Policy Aggregation in Optimization Under Uncertainty , 1991, Math. Oper. Res..

[11]  Shinji Mizuno,et al.  An O(√nL)-Iteration Homogeneous and Self-Dual Linear Programming Algorithm , 1994, Math. Oper. Res..

[12]  Yin Zhang,et al.  On the Convergence of a Class of Infeasible Interior-Point Methods for the Horizontal Linear Complementarity Problem , 1994, SIAM J. Optim..

[13]  Keith W. Hipel,et al.  A constant-potential infeasible-interior-point algorithm with application to stochastic linear programs , 1996 .

[14]  Levent Tunçel,et al.  Constant potential primal—dual algorithms: A framework , 1994, Math. Program..

[15]  Levent Tunçel,et al.  On the convergence of primal-dual interior-point methods with wide neighborhoods , 1995, Comput. Optim. Appl..

[16]  Roger J.-B. Wets,et al.  Programming Under Uncertainty: The Solution Set , 1966 .

[17]  Shinji Mizuno,et al.  Polynomiality of infeasible-interior-point algorithms for linear programming , 1994, Math. Program..

[18]  Yin Zhang,et al.  On polynomiality of the Mehrotra-type predictor—corrector interior-point algorithms , 1995, Math. Program..

[19]  Roy E. Marsten,et al.  Computational experience with a globally convergent primal—dual predictor—corrector algorithm for linear programming , 1994, Math. Program..

[20]  Robert M. Freund,et al.  An infeasible-start algorithm for linear programming whose complexity depends on the distance from the starting point to the optimal solution , 1996, Ann. Oper. Res..

[21]  P. Hansen Numerical tools for analysis and solution of Fredholm integral equations of the first kind , 1992 .

[22]  R. J-B. Wets,et al.  Large Scale Linear Programming Techniques , 1988 .

[23]  John R. Birge,et al.  Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs , 1985, Oper. Res..

[24]  R. Wets,et al.  L-SHAPED LINEAR PROGRAMS WITH APPLICATIONS TO OPTIMAL CONTROL AND STOCHASTIC PROGRAMMING. , 1969 .

[25]  John M. Mulvey,et al.  Applying the progressive hedging algorithm to stochastic generalized networks , 1991, Ann. Oper. Res..

[26]  Roy E. Marsten,et al.  On Implementing Mehrotra's Predictor-Corrector Interior-Point Method for Linear Programming , 1992, SIAM J. Optim..

[27]  Yin Zhang,et al.  On the Superlinear and Quadratic Convergence of Primal-Dual Interior Point Linear Programming Algorithms , 1992, SIAM J. Optim..

[28]  K. Anstreicher Potential Reduction Algorithms , 1996 .

[29]  Stephen J. Wright,et al.  A Superlinear Infeasible-Interior-Point Affine Scaling Algorithm for LCP , 1996, SIAM J. Optim..

[30]  Masakazu Kojima,et al.  Global convergence in infeasible-interior-point algorithms , 1994, Math. Program..

[31]  Michael J. Todd,et al.  Potential-reduction methods in mathematical programming , 1997, Math. Program..

[32]  R. Wets Solving stochastic programs with simple recourse , 1983 .

[33]  Reha H. Tütüncü,et al.  An infeasible-interior-point potential-reduction algorithm for linear programming , 1999, Math. Program..

[34]  Masakazu Kojima,et al.  Basic lemmas in polynomial-time infeasible-interiorpoint methods for linear programs , 1996, Ann. Oper. Res..

[35]  Robert J. Vanderbei,et al.  Symmetric indefinite systems for interior point methods , 1993, Math. Program..

[36]  Robert J. Vanderbei,et al.  ALPO: Another Linear Program Optimizer , 1993, INFORMS J. Comput..

[37]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[38]  Horand Ingo Gassmann Multi-period stochastic programming , 1987 .

[39]  Stephen J. Wright,et al.  A Superlinear Infeasible-Interior-Point Algorithm for Monotone Complementarity Problems , 1996, Math. Oper. Res..

[40]  N. Megiddo Pathways to the optimal set in linear programming , 1989 .

[41]  John R. Birge,et al.  Efficient solution of two-stage stochastic linear programs using interior point methods , 1992, Comput. Optim. Appl..