Review on nanomaterials synthesized by vapor transport method: growth and their related applications

Nanostructures with different dimensions, including bulk crystals, thin films, nanowires, nanobelts and nanorods, have received considerable attention due to their novel functionalities and outstanding applications in various areas, such as optics, electricity, thermoelectricity, photovoltaic fields and sensing devices. In recent years, remarkable progresses and modifications have been made upon the fabrication of nanomaterials by vapor transport method. In this review, we introduce various representative nanostructures prepared by vapor transport method and focus on the discussion of their growth, physical properties, and potential applications. Meanwhile, the essential growth mechanisms of nanostructures also have been extensively reviewed, for example, the different growth modes depending upon the specific sample growth. Finally, we conclude this review by providing our perspectives to the future vapor transport method, and indicating some key existing problems. Vapor transport process offers great opportunities for the low-cost preparation of novel single crystals with different doping level and the realization of integrating such nano/micro single crystals into spintronic and electronic devices.

[1]  A. Iraji zad,et al.  Room temperature H2S gas sensor based on rather aligned ZnO nanorods with flower-like structures , 2015 .

[2]  A. Wei,et al.  Solvothermal synthesis of Cu2ZnSnS4 nanocrystalline thin films for application of solar cells , 2015 .

[3]  Nageh K. Allam,et al.  Influence of precursor thin films stacking order on the properties of Cu2ZnSnS4 thin films fabricated by electrochemical deposition method , 2014 .

[4]  M. Deshpande,et al.  Covellite CuS – Single crystal growth by chemical vapour transport (CVT) technique and characterization , 2014 .

[5]  Yi Cui,et al.  Bifacial solar cell with SnS absorber by vapor transport deposition , 2014 .

[6]  A. K. Diab,et al.  Synthesis, photoluminescence and optical constants evaluations of ultralong CdO nanowires prepared by vapor transport method , 2014 .

[7]  Xiaodong Xu,et al.  Vapor-transport growth of high optical quality WSe2 monolayers a , 2014 .

[8]  Chunxiang Xu,et al.  Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods. , 2014, ACS applied materials & interfaces.

[9]  S. Botchway,et al.  Fluorescence lifetime imaging microscopy analysis of defects in multi‐tube physical vapor transport grown Cd1−xZnxTe , 2014 .

[10]  J. M. Baik,et al.  Conductance control in VO2 nanowires by surface doping with gold nanoparticles. , 2014, ACS applied materials & interfaces.

[11]  J. Zou,et al.  Anisotropic electrical properties from vapor-solid-solid grown Bi2Se3 nanoribbons and nanowires , 2014 .

[12]  Li Shi,et al.  Thermoelectric properties of undoped high purity higher manganese silicides grown by chemical vapor transport , 2014 .

[13]  Won-Jae Lee,et al.  ZnO nanorod growth by plasma-enhanced vapor phase transport with different growth durations , 2014 .

[14]  J. Wu,et al.  Ultrahigh responsivity and external quantum efficiency of an ultraviolet-light photodetector based on a single VO₂ microwire. , 2014, ACS applied materials & interfaces.

[15]  Wenjun Wang,et al.  Growth of threaded AlN whiskers by a physical vapor transport method , 2014 .

[16]  M. Bickermann,et al.  Bulk AlN growth by physical vapour transport , 2014 .

[17]  Yung-Chiun Her,et al.  Vapor-solid growth of p-Te/n-SnO2 hierarchical heterostructures and their enhanced room-temperature gas sensing properties. , 2014, ACS applied materials & interfaces.

[18]  A. I. Zad,et al.  Comparative study of the grown ZnO nanostructures on quartz and alumina substrates by vapor phase transport method without catalyst: Synthesis and acetone sensing properties , 2014 .

[19]  Lihong Yang,et al.  A 5.5% efficient co-electrodeposited ZnO/CdS/Cu2ZnSnS4/Mo thin film solar cell , 2014 .

[20]  Yuguang Ma,et al.  The thermodynamic characteristics of organic crystal growth by physical vapor transport: towards high-quality and color-tunable crystal preparation , 2014 .

[21]  H. E. Unalan,et al.  Germanium nanowire synthesis using solid precursors , 2014 .

[22]  Ning Lu,et al.  Direct synthesis of van der Waals solids. , 2014, ACS nano.

[23]  M. Yoshimura,et al.  Effect of solid-state polymerization on crystal morphology of a type of polydiacetylene single crystal obtained by physical vapor transport technique , 2014 .

[24]  S. Chang,et al.  Highly Sensitive $\beta{-}{\rm Ga}_{2}{\rm O}_{3}$ Nanowire Nanowires Isopropyl Alcohol Sensor , 2014, IEEE Sensors Journal.

[25]  Lain‐Jong Li,et al.  Large-area synthesis of highly crystalline WSe(2) monolayers and device applications. , 2014, ACS nano.

[26]  Rajeev Kumar,et al.  Transport properties of monolayer MoS2 grown by chemical vapor deposition. , 2014, Nano letters.

[27]  Zhenxing Wang,et al.  Topological surface transport properties of single-crystalline SnTe nanowire. , 2013, Nano letters.

[28]  E. Giannini,et al.  Chloride-Driven Chemical Vapor Transport Method for Crystal Growth of Transition Metal Dichalcogenides , 2013 .

[29]  C. Surya,et al.  Growth behavior of ZnO nanowires on Au-seeded SiO2–GaN co-substrate by vapor transport and deposition , 2013 .

[30]  Sung Hee Chun,et al.  Highly efficient electrochemical responses on single crystalline ruthenium-vanadium mixed metal oxide nanowires. , 2013, ACS applied materials & interfaces.

[31]  Tobias Drieschner,et al.  Synthesis, Characterization, and Chemical Vapor Transport of Solid Solutions in the MgMoO4-NiMoO4 System , 2013 .

[32]  S. Bent,et al.  Vapor transport deposition and epitaxy of orthorhombic SnS on glass and NaCl substrates , 2013 .

[33]  H. Okamoto,et al.  Grain Growth in Cu2ZnSnS4 Thin Films Using Sn Vapor Transport for Photovoltaic Applications , 2013 .

[34]  Z. Hassan,et al.  Growth and characterization of different structured CdO using a vapor transport , 2013 .

[35]  H. Chehouani,et al.  Effects of temperature, pressure and pure copper added to source material on the CuGaTe2 deposition using close spaced vapor transport technique , 2013 .

[36]  D. Yu,et al.  Thermodynamic study on Li-poor chemical vapor transport equilibration in MgO-doped LiNbO3 crystal , 2013 .

[37]  G. H. Bauer,et al.  Physical vapor deposition of Bi2S3 as absorber material in thin film photovoltaics , 2013 .

[38]  Se Jin Park,et al.  Synthesis of Cu2ZnSnS4 thin films by a precursor solution paste for thin film solar cell applications. , 2013, ACS applied materials & interfaces.

[39]  Lain-Jong Li,et al.  Large-Area Aiming Synthesis of WSe2 Monolayers , 2013, 1304.7365.

[40]  C. Ho,et al.  Direct vapor transport synthesis of ZnGa2O4 nanowires with superior photocatalytic activity , 2013 .

[41]  L. Brockway,et al.  Large-scale synthesis and in situ functionalization of Zn3P2 and Zn4Sb3 nanowire powders. , 2013, Physical chemistry chemical physics : PCCP.

[42]  Kai Liu,et al.  Axially engineered metal-insulator phase transition by graded doping VO2 nanowires. , 2013, Journal of the American Chemical Society.

[43]  Jiangtian Li,et al.  SnO₂@CdS nanowire-quantum dots heterostructures: tailoring optical properties of SnO₂ for enhanced photodetection and photocatalysis. , 2013, Nanoscale.

[44]  M. López-López,et al.  Photoluminescence Study of Gallium Nitride Thin Films Obtained by Infrared Close Space Vapor Transport , 2013, Materials.

[45]  Song Jin,et al.  Synthesis, characterization, and variable range hopping transport of pyrite (FeS₂) nanorods, nanobelts, and nanoplates. , 2013, ACS nano.

[46]  Jun Lou,et al.  Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. , 2013, Nature materials.

[47]  J. Spanier,et al.  Selective Epitaxial Growth on Germanium Nanowires via Hybrid Oxide-Stabilized/Vapor–Liquid–Solid Growth , 2013 .

[48]  Timothy C. Berkelbach,et al.  Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. , 2013, Nature materials.

[49]  Wei Zhang,et al.  Preparation and Photoluminescence of (3C-ZnS)/(2H-ZnS) Superlattice in Mn-doped ZnS Nanoribbons , 2012 .

[50]  Weihua Tang,et al.  Catalyst-free chemical vapor deposition route to InN nanowires and their cathodoluminescence properties , 2012 .

[51]  J. T. Mullins,et al.  Growth by the Multi-tube Physical Vapour Transport method and characterisation of bulk (Cd,Zn)Te , 2012 .

[52]  M. Tirado,et al.  ZnO nanowire co-growth on SiO2 and C by carbothermal reduction and vapour advection , 2012, Nanotechnology.

[53]  M. Meyyappan,et al.  Vertical ZnO nanowire growth on metal substrates , 2012, Nanotechnology.

[54]  Yong Kim,et al.  ZnTe Nanowires with Oxygen Intermediate Band Grown by Bismuth- Catalyzed Physical Vapor Transport , 2012 .

[55]  J. Spanier,et al.  Shape-Controlled Vapor-Transport Growth of Tellurium Nanowires , 2012 .

[56]  Sunghun Lee,et al.  Single Crystalline NbO 2 Nanowire Synthesis by Chemical Vapor Transport Method , 2012 .

[57]  Kai Liu,et al.  Ultra-long, free-standing, single-crystalline vanadium dioxide micro/nanowires grown by simple thermal evaporation , 2012 .

[58]  J. Bubendorff,et al.  Size effect on Ge nanowires growth kinetics by the vapor–liquid–solid mechanism , 2012 .

[59]  James A. Warren,et al.  Stability and topological transformations of liquid droplets on vapor-liquid-solid nanowires , 2012 .

[60]  U. Philipose,et al.  Transport properties of Sb-doped Si nanowires , 2011 .

[61]  Chen Xu,et al.  Self‐heating and External Strain Coupling Induced Phase Transition of VO2 Nanobeam as Single Domain Switch , 2011, Advanced materials.

[62]  P. K. Nair,et al.  Analysis of a Bismuth Sulfide/Silicon Junction for Building Thin Film Solar Cells , 2011 .

[63]  Y. Xia,et al.  The synthesis of Bi2Te3 nanobelts by vapor–liquid–solid method and their electrical transport properties , 2011 .

[64]  Evgheni Strelcov,et al.  In situ monitoring of the growth, intermediate phase transformations and templating of single crystal VO2 nanowires and nanoplatelets. , 2011, ACS nano.

[65]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[66]  Dong Yu,et al.  Electric field dependent photocurrent decay length in single lead sulfide nanowire field effect transistors. , 2011, Nano letters.

[67]  P. K. Nair,et al.  Chemically deposited lead sulfide and bismuth sulfide thin films and Bi2S3/PbS solar cells , 2011 .

[68]  Yong Ding,et al.  External‐Strain Induced Insulating Phase Transition in VO2 Nanobeam and Its Application as Flexible Strain Sensor , 2010, Advanced materials.

[69]  Dong Xu,et al.  Fabrication of Cu2ZnSnS4 screen printed layers for solar cells , 2010 .

[70]  Jin-Gyu Kim,et al.  In situ TEM observation of heterogeneous phase transition of a constrained single-crystalline Ag2Te nanowire. , 2010, Nano letters.

[71]  Ning Wang,et al.  Structure and Metal-to-Insulator Transition of VO2 Nanowires Grown on Sapphire Substrates , 2010 .

[72]  Jeunghee Park,et al.  Thermoelectric properties of individual single-crystalline PbTe nanowires grown by a vapor transport method , 2010, 2010 3rd International Nanoelectronics Conference (INEC).

[73]  H. Kim,et al.  Transport properties of single-crystalline n-type semiconducting PbTe nanowires , 2009, Nanotechnology.

[74]  J. Wu,et al.  Thermoelectric effect across the metal-insulator domain walls in VO2 microbeams. , 2009, Nano letters.

[75]  D. R. Khanal,et al.  Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams. , 2009, Nature nanotechnology.

[76]  Pooi See Lee,et al.  Synthesis and structure characterization of ternary Zn2GeO4 nanowires by chemical vapor transport , 2009 .

[77]  Heon-Jin Choi,et al.  Magnetic and Electrical Properties of Single-Crystalline Mn-Doped Ge Nanowires , 2009 .

[78]  Evgheni Strelcov,et al.  Gas sensor based on metal-insulator transition in VO2 nanowire thermistor. , 2009, Nano letters.

[79]  L. Lauhon,et al.  Alternative catalysts for VSS growth of silicon and germanium nanowires , 2009 .

[80]  P. Voorhees,et al.  Step-flow growth of a nanowire in the vapor-liquid-solid and vapor-solid-solid processes , 2008 .

[81]  Hisao Uchiki,et al.  Fabrication of Cu2ZnSnS4 Thin-Film Solar Cell Prepared by Pulsed Laser Deposition , 2007 .

[82]  S. Kodambaka,et al.  Germanium Nanowire Growth Below the Eutectic Temperature , 2007, Science.

[83]  R. Cava,et al.  Superconductivity in CuxTiSe2 , 2006, cond-mat/0606529.

[84]  Charles M. Lieber,et al.  A laser ablation method for the synthesis of crystalline semiconductor nanowires , 1998, Science.