Strong p-type doping of individual carbon nanotubes by Prussian blue functionalization.
暂无分享,去创建一个
[1] K. Balasubramanian,et al. Electrochemically modified single‐walled carbon nanotubes , 2007 .
[2] M. Fan,et al. Fabrication of Prussian Blue/Multiwalled Carbon Nanotubes/Glass Carbon Electrode through Sequential Deposition , 2007 .
[3] Ulrich Schlecht,et al. Electrochemically decorated carbon nanotubes for hydrogen sensing , 2007 .
[4] Jun Xu,et al. The Synergistic Effect of Prussian‐Blue‐Grafted Carbon Nanotube/Poly(4‐vinylpyridine) Composites for Amperometric Sensing , 2007 .
[5] L. Nie,et al. Improved electrochemical properties of prussian blue by multi-walled carbon nanotubes , 2007 .
[6] Lixian Sun,et al. Prussian Blue electrodeposited on MWNTs-PANI hybrid composites for H(2)O(2) detection. , 2007, Talanta.
[7] K. Balasubramanian,et al. Functionalized metallic carbon nanotube devices for pH sensing. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.
[8] J. Gómez‐Herrero,et al. WSXM: a software for scanning probe microscopy and a tool for nanotechnology. , 2007, The Review of scientific instruments.
[9] G. Weiss,et al. Conductance-Controlled Point Functionalization of Single-Walled Carbon Nanotubes , 2007, Science.
[10] Zhongfan Liu,et al. Electrochemical deposition of Prussian blue on hydrogen terminated silicon(111) , 2006 .
[11] Yingna Guo,et al. Amperometric Glucose Biosensors Based on Integration of Glucose Oxidase onto Prussian Blue/Carbon Nanotubes Nanocomposite Electrodes , 2006 .
[12] A. Khlobystov,et al. Noncovalent interactions of molecules with single walled carbon nanotubes. , 2006, Chemical Society reviews.
[13] Wanzhi. Wei,et al. New Nanocomposite Based on Prussian Blue Nanoparticles/Carbon Nanotubes/Chitosan and Its Application for Assembling of Amperometric Glucose Biosensor , 2006 .
[14] L. Qian,et al. Assembly of Prussian blue onto SiO2 nanoparticles and carbon nanotubes by electrostatic interaction , 2006 .
[15] F. Reininghaus,et al. Fingerprints of the magnetic polaron in nonequilibrium electron transport through a quantum wire coupled to a ferromagnetic spin chain. , 2006, Physical review letters.
[16] Y. Lian,et al. Spectroscopic study on the centrifugal fractionation of soluble single-walled carbon nanotubes , 2005 .
[17] D. Bélanger,et al. Functionalization of glassy carbon electrodes with metal-based species , 2005 .
[18] P. Avouris,et al. Self-aligned carbon nanotube transistors with charge transfer doping , 2005, cond-mat/0511039.
[19] P. Avouris,et al. Charge transfer induced polarity switching in carbon nanotube transistors. , 2005, Nano letters.
[20] K. Balasubramanian,et al. Chemically functionalized carbon nanotubes. , 2005, Small.
[21] G. Grüner. Carbon nanotube transistors for biosensing applications. , 2005 .
[22] N. S. McIntyre,et al. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds , 2004 .
[23] Di Li,et al. Functionalization of single-walled carbon nanotubes with Prussian blue , 2004 .
[24] M. Knupfer,et al. Electronic properties of FeCl 3 -intercalated single-wall carbon nanotubes , 2004 .
[25] Linda S. Schadler,et al. Temperature dependence of radial breathing mode Raman frequency of single-walled carbon nanotubes , 2002 .
[26] H. Dai,et al. Delivery of Catalytic Metal Species onto Surfaces with Dendrimer Carriers for the Synthesis of Carbon Nanotubes with Narrow Diameter Distribution , 2002 .
[27] Klaus Kern,et al. Carbon nanotube memory devices of high charge storage stability , 2002 .
[28] R Martel,et al. Carbon nanotubes as schottky barrier transistors. , 2002, Physical review letters.
[29] K. Kern,et al. Elektrochemische Modifizierung einzelner Kohlenstoff-Nanoröhren Diese Arbeit wurde von der Europäischen Union (Projektnummer HPRN-CT-1999-00011) unterstützt. Die Autoren danken B. Siegle, Max-Planck-Institut für Metallforschung, Stuttgart, für die Unterstützung bei der Aufnahme der Auger-Spektren. , 2002 .
[30] Richard Martel,et al. Controlling doping and carrier injection in carbon nanotube transistors , 2002 .
[31] Erik H. Anderson,et al. Chemical profiling of single nanotubes: Intramolecular p–n–p junctions and on-tube single-electron transistors , 2002 .
[32] A Javey,et al. Polymer functionalization for air-stable n-type carbon nanotube field-effect transistors. , 2001, Journal of the American Chemical Society.
[33] A. Karyakin,et al. Prussian Blue and Its Analogues: Electrochemistry and Analytical Applications , 2001 .
[34] Hongjie Dai,et al. Full and Modulated Chemical Gating of Individual Carbon Nanotubes by Organic Amine Compounds , 2001 .
[35] H. Dai,et al. Modulated chemical doping of individual carbon nanotubes. , 2000, Science.
[36] T. Ichihashi,et al. Effect of oxidation on single-wall carbon nanotubes , 2000 .
[37] Prakash R. Somani,et al. Study and development of conducting polymer-based electrochromic display devices , 2000 .
[38] James Hone,et al. Chemical doping of individual semiconducting carbon-nanotube ropes , 2000 .
[39] Kong,et al. Nanotube molecular wires as chemical sensors , 2000, Science.
[40] Lin Xia,et al. Structure and Function of Ferricyanide in the Formation of Chromate Conversion Coatings on Aluminum Aircraft Alloy , 1999 .
[41] P. Eklund,et al. Electrochemical Oxidation of Single Wall Carbon Nanotube Bundles in Sulfuric Acid , 1999 .
[42] Herbert Shea,et al. Single- and multi-wall carbon nanotube field-effect transistors , 1998 .
[43] T. N. Todorov,et al. Carbon nanotubes as long ballistic conductors , 1998, Nature.
[44] S. Tans,et al. Room-temperature transistor based on a single carbon nanotube , 1998, Nature.
[45] A. M. Rao,et al. Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering , 1997, Nature.
[46] M. Datta,et al. In situ FTIR and XPS studies of the hexacyanoferrate Redox system , 1990 .
[47] Kingo Itaya,et al. Spectroelectrochemistry and electrochemical preparation method of Prussian blue modified electrodes , 1982 .
[48] Kingo Itaya,et al. Electrochemistry of Prussian Blue Modified Electrodes: An Electrochemical Preparation Method , 1982 .
[49] Peter Fischer,et al. Neutron diffraction study of Prussian Blue, Fe4[Fe(CN)6]3.xH2O. Location of water molecules and long-range magnetic order , 1980 .
[50] Vernon D. Neff,et al. Electrochemical Oxidation and Reduction of Thin Films of Prussian Blue , 1978 .
[51] E. Fluck,et al. Mössbauer and X‐ray photoelectron spectroscopic studies of prussian blue and its related compounds , 1977 .
[52] H. Klauk,et al. High-performance carbon nanotube field effect transistors with a thin gate dielectric based on a self-assembled monolayer. , 2007, Nano letters.
[53] W. Jin,et al. Self-assembled Films of Prussian Blue and Analogues: Optical and Electrochemical Properties and Application as Ion-Sieving Membranes , 2003 .
[54] Andreas Hirsch,et al. Doping of single-walled carbon nanotube bundles by Brønsted acids , 2003 .
[55] W. Stickle,et al. Handbook of X-Ray Photoelectron Spectroscopy , 1992 .
[56] Hardcover,et al. Carbon: Electrochemical and Physicochemical Properties , 1988 .