Strong p-type doping of individual carbon nanotubes by Prussian blue functionalization.

Keywords: carbon nanotubes ; doping ; electrodeposition ; Prussian blue ; Field-Effect Transistors ; Electrochemical Preparation Method ; Modified Electrodes ; Charge-Transfer ; Single ; Oxidation ; Devices ; Bundles ; Composites ; Deposition Reference EPFL-ARTICLE-160520doi:10.1002/smll.200800803View record in Web of Science Record created on 2010-11-30, modified on 2017-05-12

[1]  K. Balasubramanian,et al.  Electrochemically modified single‐walled carbon nanotubes , 2007 .

[2]  M. Fan,et al.  Fabrication of Prussian Blue/Multiwalled Carbon Nanotubes/Glass Carbon Electrode through Sequential Deposition , 2007 .

[3]  Ulrich Schlecht,et al.  Electrochemically decorated carbon nanotubes for hydrogen sensing , 2007 .

[4]  Jun Xu,et al.  The Synergistic Effect of Prussian‐Blue‐Grafted Carbon Nanotube/Poly(4‐vinylpyridine) Composites for Amperometric Sensing , 2007 .

[5]  L. Nie,et al.  Improved electrochemical properties of prussian blue by multi-walled carbon nanotubes , 2007 .

[6]  Lixian Sun,et al.  Prussian Blue electrodeposited on MWNTs-PANI hybrid composites for H(2)O(2) detection. , 2007, Talanta.

[7]  K. Balasubramanian,et al.  Functionalized metallic carbon nanotube devices for pH sensing. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[8]  J. Gómez‐Herrero,et al.  WSXM: a software for scanning probe microscopy and a tool for nanotechnology. , 2007, The Review of scientific instruments.

[9]  G. Weiss,et al.  Conductance-Controlled Point Functionalization of Single-Walled Carbon Nanotubes , 2007, Science.

[10]  Zhongfan Liu,et al.  Electrochemical deposition of Prussian blue on hydrogen terminated silicon(111) , 2006 .

[11]  Yingna Guo,et al.  Amperometric Glucose Biosensors Based on Integration of Glucose Oxidase onto Prussian Blue/Carbon Nanotubes Nanocomposite Electrodes , 2006 .

[12]  A. Khlobystov,et al.  Noncovalent interactions of molecules with single walled carbon nanotubes. , 2006, Chemical Society reviews.

[13]  Wanzhi. Wei,et al.  New Nanocomposite Based on Prussian Blue Nanoparticles/Carbon Nanotubes/Chitosan and Its Application for Assembling of Amperometric Glucose Biosensor , 2006 .

[14]  L. Qian,et al.  Assembly of Prussian blue onto SiO2 nanoparticles and carbon nanotubes by electrostatic interaction , 2006 .

[15]  F. Reininghaus,et al.  Fingerprints of the magnetic polaron in nonequilibrium electron transport through a quantum wire coupled to a ferromagnetic spin chain. , 2006, Physical review letters.

[16]  Y. Lian,et al.  Spectroscopic study on the centrifugal fractionation of soluble single-walled carbon nanotubes , 2005 .

[17]  D. Bélanger,et al.  Functionalization of glassy carbon electrodes with metal-based species , 2005 .

[18]  P. Avouris,et al.  Self-aligned carbon nanotube transistors with charge transfer doping , 2005, cond-mat/0511039.

[19]  P. Avouris,et al.  Charge transfer induced polarity switching in carbon nanotube transistors. , 2005, Nano letters.

[20]  K. Balasubramanian,et al.  Chemically functionalized carbon nanotubes. , 2005, Small.

[21]  G. Grüner Carbon nanotube transistors for biosensing applications. , 2005 .

[22]  N. S. McIntyre,et al.  Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds , 2004 .

[23]  Di Li,et al.  Functionalization of single-walled carbon nanotubes with Prussian blue , 2004 .

[24]  M. Knupfer,et al.  Electronic properties of FeCl 3 -intercalated single-wall carbon nanotubes , 2004 .

[25]  Linda S. Schadler,et al.  Temperature dependence of radial breathing mode Raman frequency of single-walled carbon nanotubes , 2002 .

[26]  H. Dai,et al.  Delivery of Catalytic Metal Species onto Surfaces with Dendrimer Carriers for the Synthesis of Carbon Nanotubes with Narrow Diameter Distribution , 2002 .

[27]  Klaus Kern,et al.  Carbon nanotube memory devices of high charge storage stability , 2002 .

[28]  R Martel,et al.  Carbon nanotubes as schottky barrier transistors. , 2002, Physical review letters.

[29]  K. Kern,et al.  Elektrochemische Modifizierung einzelner Kohlenstoff-Nanoröhren Diese Arbeit wurde von der Europäischen Union (Projektnummer HPRN-CT-1999-00011) unterstützt. Die Autoren danken B. Siegle, Max-Planck-Institut für Metallforschung, Stuttgart, für die Unterstützung bei der Aufnahme der Auger-Spektren. , 2002 .

[30]  Richard Martel,et al.  Controlling doping and carrier injection in carbon nanotube transistors , 2002 .

[31]  Erik H. Anderson,et al.  Chemical profiling of single nanotubes: Intramolecular p–n–p junctions and on-tube single-electron transistors , 2002 .

[32]  A Javey,et al.  Polymer functionalization for air-stable n-type carbon nanotube field-effect transistors. , 2001, Journal of the American Chemical Society.

[33]  A. Karyakin,et al.  Prussian Blue and Its Analogues: Electrochemistry and Analytical Applications , 2001 .

[34]  Hongjie Dai,et al.  Full and Modulated Chemical Gating of Individual Carbon Nanotubes by Organic Amine Compounds , 2001 .

[35]  H. Dai,et al.  Modulated chemical doping of individual carbon nanotubes. , 2000, Science.

[36]  T. Ichihashi,et al.  Effect of oxidation on single-wall carbon nanotubes , 2000 .

[37]  Prakash R. Somani,et al.  Study and development of conducting polymer-based electrochromic display devices , 2000 .

[38]  James Hone,et al.  Chemical doping of individual semiconducting carbon-nanotube ropes , 2000 .

[39]  Kong,et al.  Nanotube molecular wires as chemical sensors , 2000, Science.

[40]  Lin Xia,et al.  Structure and Function of Ferricyanide in the Formation of Chromate Conversion Coatings on Aluminum Aircraft Alloy , 1999 .

[41]  P. Eklund,et al.  Electrochemical Oxidation of Single Wall Carbon Nanotube Bundles in Sulfuric Acid , 1999 .

[42]  Herbert Shea,et al.  Single- and multi-wall carbon nanotube field-effect transistors , 1998 .

[43]  T. N. Todorov,et al.  Carbon nanotubes as long ballistic conductors , 1998, Nature.

[44]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[45]  A. M. Rao,et al.  Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering , 1997, Nature.

[46]  M. Datta,et al.  In situ FTIR and XPS studies of the hexacyanoferrate Redox system , 1990 .

[47]  Kingo Itaya,et al.  Spectroelectrochemistry and electrochemical preparation method of Prussian blue modified electrodes , 1982 .

[48]  Kingo Itaya,et al.  Electrochemistry of Prussian Blue Modified Electrodes: An Electrochemical Preparation Method , 1982 .

[49]  Peter Fischer,et al.  Neutron diffraction study of Prussian Blue, Fe4[Fe(CN)6]3.xH2O. Location of water molecules and long-range magnetic order , 1980 .

[50]  Vernon D. Neff,et al.  Electrochemical Oxidation and Reduction of Thin Films of Prussian Blue , 1978 .

[51]  E. Fluck,et al.  Mössbauer and X‐ray photoelectron spectroscopic studies of prussian blue and its related compounds , 1977 .

[52]  H. Klauk,et al.  High-performance carbon nanotube field effect transistors with a thin gate dielectric based on a self-assembled monolayer. , 2007, Nano letters.

[53]  W. Jin,et al.  Self-assembled Films of Prussian Blue and Analogues: Optical and Electrochemical Properties and Application as Ion-Sieving Membranes , 2003 .

[54]  Andreas Hirsch,et al.  Doping of single-walled carbon nanotube bundles by Brønsted acids , 2003 .

[55]  W. Stickle,et al.  Handbook of X-Ray Photoelectron Spectroscopy , 1992 .

[56]  Hardcover,et al.  Carbon: Electrochemical and Physicochemical Properties , 1988 .