Stability of Manifold-Valued Subdivision Schemes and Multiscale Transformations

Linear subdivision schemes can be adapted in various ways so as to operate in nonlinear geometries such as Lie groups or Riemannian manifolds. It is well known that along with a linear subdivision scheme a multiscale transformation is defined. Such transformations can also be defined in a nonlinear setting. We show the stability of such nonlinear multiscale transforms. To do this we introduce a new kind of proximity condition which bounds the difference of the differential of a nonlinear subdivision scheme and a linear one. It turns out that—unlike the generic nonlinear case and modulo some minor technical assumptions—in the manifold-valued setting, convergence implies stability of the nonlinear subdivision scheme and associated nonlinear multiscale transformations.

[1]  Karine Dadourian,et al.  Schémas de subdivision, analyses multirésolutions non-linéaires. Applications , 2008 .

[2]  Gang Xie,et al.  Smoothness Equivalence Properties of General Manifold-Valued Data Subdivision Schemes , 2008, Multiscale Model. Simul..

[3]  Wim Sweldens,et al.  The lifting scheme: a construction of second generation wavelets , 1998 .

[4]  Jean-Pierre Bourguignon,et al.  Mathematische Annalen , 1893 .

[5]  D. Donoho Smooth Wavelet Decompositions with Blocky Coefficient Kernels , 1993 .

[6]  David L. Donoho,et al.  Nonlinear Pyramid Transforms Based on Median-Interpolation , 2000, SIAM J. Math. Anal..

[7]  Jacques Liandrat,et al.  On the stability of the PPH nonlinear multiresolution , 2005 .

[8]  Johannes Wallner,et al.  Interpolatory wavelets for manifold-valued data , 2009 .

[9]  C. Micchelli,et al.  Stationary Subdivision , 1991 .

[10]  G. Faber Über stetige Funktionen , 1908 .

[11]  T. Yu,et al.  Smoothness equivalence properties of interpolatory Lie group subdivision schemes , 2010 .

[12]  Philipp Grohs,et al.  Smoothness of interpolatory multivariate subdivision in Lie groups , 2009 .

[13]  D. Levin,et al.  Subdivision schemes in geometric modelling , 2002, Acta Numerica.

[14]  Philipp Grohs,et al.  Smoothness Analysis of Subdivision Schemes on Regular Grids by Proximity , 2008, SIAM J. Numer. Anal..

[15]  Johannes Wallner Smoothness Analysis of Subdivision Schemes by Proximity , 2006 .

[16]  T. Yu,et al.  Approximation order equivalence properties of manifold-valued data subdivision schemes , 2012 .

[17]  Philipp Grohs,et al.  Approximation order from stability for nonlinear subdivision schemes , 2010, J. Approx. Theory.

[18]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[19]  L. Schumaker,et al.  Recent advances in wavelet analysis , 1995 .

[20]  I. Holopainen Riemannian Geometry , 1927, Nature.

[21]  Philipp Grohs,et al.  Smoothness equivalence properties of univariate subdivision schemes and their projection analogues , 2009, Numerische Mathematik.

[22]  Gitta Kutyniok,et al.  Adaptive Directional Subdivision Schemes and Shearlet Multiresolution Analysis , 2007, SIAM J. Math. Anal..

[23]  O. Runborg Introduction to Normal Multiresolution Approximation , 2005 .

[24]  Wolfgang Gaul,et al.  "Classification, Clustering, and Data Mining Applications" , 2004 .

[25]  Nira Dyn,et al.  Convergence and C1 analysis of subdivision schemes on manifolds by proximity , 2005, Comput. Aided Geom. Des..

[26]  Peter Schröder,et al.  Multiscale Representations for Manifold-Valued Data , 2005, Multiscale Model. Simul..

[27]  S. Amat,et al.  Analysis of a class of non linear subdivision schemes and associated multi-resolution transforms , 2008 .

[28]  Z. Ditzian Moduli of smoothness using discrete data , 1987 .

[29]  Nira Dyn,et al.  Acta Numerica 2002: Subdivision schemes in geometric modelling , 2002 .

[30]  I. Daubechies,et al.  Normal Multiresolution Approximation of Curves , 2004 .

[31]  C. Micchelli Mathematical aspects of geometric modeling , 1987 .

[32]  S. Osher,et al.  Some results on uniformly high-order accurate essentially nonoscillatory schemes , 1986 .

[33]  Nira Dyn,et al.  Approximation order of interpolatory nonlinear subdivision schemes , 2010, J. Comput. Appl. Math..

[34]  David L. Donoho,et al.  Interpolating Wavelet Transforms , 1992 .

[35]  P. Oswald,et al.  Stability of Nonlinear Subdivision and Multiscale Transforms , 2010 .