Stability of Manifold-Valued Subdivision Schemes and Multiscale Transformations
暂无分享,去创建一个
[1] Karine Dadourian,et al. Schémas de subdivision, analyses multirésolutions non-linéaires. Applications , 2008 .
[2] Gang Xie,et al. Smoothness Equivalence Properties of General Manifold-Valued Data Subdivision Schemes , 2008, Multiscale Model. Simul..
[3] Wim Sweldens,et al. The lifting scheme: a construction of second generation wavelets , 1998 .
[4] Jean-Pierre Bourguignon,et al. Mathematische Annalen , 1893 .
[5] D. Donoho. Smooth Wavelet Decompositions with Blocky Coefficient Kernels , 1993 .
[6] David L. Donoho,et al. Nonlinear Pyramid Transforms Based on Median-Interpolation , 2000, SIAM J. Math. Anal..
[7] Jacques Liandrat,et al. On the stability of the PPH nonlinear multiresolution , 2005 .
[8] Johannes Wallner,et al. Interpolatory wavelets for manifold-valued data , 2009 .
[9] C. Micchelli,et al. Stationary Subdivision , 1991 .
[10] G. Faber. Über stetige Funktionen , 1908 .
[11] T. Yu,et al. Smoothness equivalence properties of interpolatory Lie group subdivision schemes , 2010 .
[12] Philipp Grohs,et al. Smoothness of interpolatory multivariate subdivision in Lie groups , 2009 .
[13] D. Levin,et al. Subdivision schemes in geometric modelling , 2002, Acta Numerica.
[14] Philipp Grohs,et al. Smoothness Analysis of Subdivision Schemes on Regular Grids by Proximity , 2008, SIAM J. Numer. Anal..
[15] Johannes Wallner. Smoothness Analysis of Subdivision Schemes by Proximity , 2006 .
[16] T. Yu,et al. Approximation order equivalence properties of manifold-valued data subdivision schemes , 2012 .
[17] Philipp Grohs,et al. Approximation order from stability for nonlinear subdivision schemes , 2010, J. Approx. Theory.
[18] H. Triebel. Interpolation Theory, Function Spaces, Differential Operators , 1978 .
[19] L. Schumaker,et al. Recent advances in wavelet analysis , 1995 .
[20] I. Holopainen. Riemannian Geometry , 1927, Nature.
[21] Philipp Grohs,et al. Smoothness equivalence properties of univariate subdivision schemes and their projection analogues , 2009, Numerische Mathematik.
[22] Gitta Kutyniok,et al. Adaptive Directional Subdivision Schemes and Shearlet Multiresolution Analysis , 2007, SIAM J. Math. Anal..
[23] O. Runborg. Introduction to Normal Multiresolution Approximation , 2005 .
[24] Wolfgang Gaul,et al. "Classification, Clustering, and Data Mining Applications" , 2004 .
[25] Nira Dyn,et al. Convergence and C1 analysis of subdivision schemes on manifolds by proximity , 2005, Comput. Aided Geom. Des..
[26] Peter Schröder,et al. Multiscale Representations for Manifold-Valued Data , 2005, Multiscale Model. Simul..
[27] S. Amat,et al. Analysis of a class of non linear subdivision schemes and associated multi-resolution transforms , 2008 .
[28] Z. Ditzian. Moduli of smoothness using discrete data , 1987 .
[29] Nira Dyn,et al. Acta Numerica 2002: Subdivision schemes in geometric modelling , 2002 .
[30] I. Daubechies,et al. Normal Multiresolution Approximation of Curves , 2004 .
[31] C. Micchelli. Mathematical aspects of geometric modeling , 1987 .
[32] S. Osher,et al. Some results on uniformly high-order accurate essentially nonoscillatory schemes , 1986 .
[33] Nira Dyn,et al. Approximation order of interpolatory nonlinear subdivision schemes , 2010, J. Comput. Appl. Math..
[34] David L. Donoho,et al. Interpolating Wavelet Transforms , 1992 .
[35] P. Oswald,et al. Stability of Nonlinear Subdivision and Multiscale Transforms , 2010 .