Growth and characterization of InAs/InP0.69Sb0.31 superlattice by MOCVD

[1]  A. Pandey,et al.  Interface engineered MBE grown InAs/GaSb based type-II superlattice heterostructures , 2022 .

[2]  E. Weiss,et al.  Improved performances InAs/AlSb Type-II superlattice photodiodes for eSWIR with L of 2.4 µm and QE of 38% at 300 K , 2020 .

[3]  Qihua Wu,et al.  Characterization of InAs/GaSb superlattices grown by MOCVD with atomic resolution , 2020 .

[4]  A. Krier,et al.  Effect of the cap layer growth temperature on the Sb distribution in InAs/InSb/InAs sub-monolayer heterostructures for mid-infrared devices , 2019, Nanotechnology.

[5]  M. Huang,et al.  Light-harvesting for high quantum efficiency in InAs-based InAs/GaAsSb type-II superlattices long wavelength infrared photodetectors , 2019, Applied Physics Letters.

[6]  D. Cohen-Elias,et al.  Short wavelength infrared pBn GaSb/AlAsSb/InPSb photodetector , 2017 .

[7]  Eric Costard,et al.  Manufacturability of type-II InAs/GaSb superlattice detectors for infrared imaging , 2017 .

[8]  Manijeh Razeghi,et al.  High-performance short-wavelength infrared photodetectors based on type-II InAs/InAs1-xSbx/AlAs1−xSbx superlattices , 2015 .

[9]  K. Cheng,et al.  Semiempirical method of suppressing interference effects in photoluminescence spectra of GaN heterostructures , 2014 .

[10]  John F. Klem,et al.  GaSb-based infrared detectors utilizing InAsPSb absorbers , 2013 .

[11]  Kai Cui,et al.  How to Use Type II InAs/GaSb Superlattice Structure to Reach Detection Wavelength of 2–3 $\mu{\rm m}$ , 2012, IEEE Journal of Quantum Electronics.

[12]  B. Gault,et al.  Interfacial chemistry in an InAs/GaSb superlattice studied by pulsed laser atom probe tomography , 2012 .

[13]  M. Amann,et al.  Growth of various antimony-containing alloys by MOVPE , 2008 .

[14]  G. May,et al.  Fundamental reactions controlling anion exchange during mixed anion heterojunction formation: Chemistry of As-for-Sb and Sb-for-As exchange reactions , 2006 .

[15]  Mario G. Ancona,et al.  Antimonide-based compound semiconductors for electronic devices: A review , 2005 .

[16]  Yajun Wei,et al.  Modeling of type-II InAs/GaSb superlattices using an empirical tight-binding method and interface engineering , 2004 .

[17]  Manijeh Razeghi,et al.  Overview of antimonide based III-V semiconductor epitaxial layers and their applications at the center for quantum devices , 2003 .

[18]  R. M. Biefeld The metal-organic chemical vapor deposition and properties of III–V antimony-based semiconductor materials , 2002 .

[19]  G. Turner,et al.  Visualizing interfacial structure at non-common-atom heterojunctions with cross-sectional scanning tunneling microscopy. , 2000, Physical review letters.

[20]  E. Yoon,et al.  Observation of two independent sources for arsenic carryover , 2000 .

[21]  R. M. Biefeld,et al.  The Growth of InAsSb/InAs/InPSb/InAs Mid-Infrared Emitters by Metal-Organic Chemical Vapor Deposition , 1999 .

[22]  R. M. Biefeld,et al.  InAsSb/InPSb strained-layer superlattice growth using metal-organic chemical vapor deposition , 1999 .

[23]  Qianghua Xie,et al.  Arsenic for antimony exchange on GaSb, its impacts on surface morphology, and interface structure , 1999 .

[24]  R. Kilaas,et al.  Optimal and near‐optimal filters in high‐resolution electron microscopy , 1998 .

[25]  K. Heime,et al.  Characterization of MOVPE grown InPSb/InAs heterostructures , 1998 .

[26]  R. M. Biefeld,et al.  The growth of InP1-xSbx by metalorganic chemical vapor deposition , 1993 .

[27]  Gerald B. Stringfellow,et al.  Organometallic vapor‐phase epitaxial growth and characterization of the metastable alloy InP1−xSbx , 1988 .