Complexes of Fe(III) and Ga(III) Derived from the Cyclic 6‐ and 7‐Membered Hydroxamic Acids Found in Mixed Siderophores

[1]  A. Butler,et al.  C-Diazeniumdiolate Graminine in the Siderophore Gramibactin Is Photoreactive and Originates from Arginine , 2022, ACS chemical biology.

[2]  N. Kircheva,et al.  Gallium as an Antibacterial Agent: A DFT/SMD Study of the Ga3+/Fe3+ Competition for Binding Bacterial Siderophores. , 2020, Inorganic chemistry.

[3]  O. Boerman,et al.  Direct comparison of the in vitro and in vivo stability of DFO, DFO* and DFOcyclo* for 89Zr-immunoPET , 2019, European Journal of Nuclear Medicine and Molecular Imaging.

[4]  H. Saluz,et al.  Gramibactin is a bacterial siderophore with a diazeniumdiolate ligand system , 2018, Nature Chemical Biology.

[5]  I. Schalk A Trojan-Horse Strategy Including a Bacterial Suicide Action for the Efficient Use of a Specific Gram-Positive Antibiotic on Gram-Negative Bacteria. , 2018, Journal of medicinal chemistry.

[6]  J. Roithová,et al.  A Comparative IRMPD and DFT Study of Fe3+ and UO22+ Complexation with N-Methylacetohydroxamic Acid. , 2018, Inorganic chemistry.

[7]  Christine Stern,et al.  Conformational and structural studies of N-methylacetohydroxamic acid and of its mono- and bis-chelated uranium(VI) complexes. , 2015, Journal of inorganic biochemistry.

[8]  P. Thuéry,et al.  Synthesis and Structural Study of Tetravalent (Zr4+, Hf4+, Ce4+, Th4+, U4+) Metal Complexes with Cyclic Hydroxamic Acids , 2015 .

[9]  G. Challis,et al.  Structure and biosynthesis of scabichelin, a novel tris-hydroxamate siderophore produced by the plant pathogen Streptomyces scabies 87.22. , 2013, Organic & biomolecular chemistry.

[10]  R. Kolter,et al.  Structure and Biosynthesis of Amychelin, an Unusual Mixed-Ligand Siderophore from Amycolatopsis sp. AA4 , 2011, Journal of the American Chemical Society.

[11]  Alexandre Drouin,et al.  Photochemical rearrangement of N-mesyloxylactams: stereospecific formation of N-heterocycles. , 2011, The Journal of organic chemistry.

[12]  S. King,et al.  Synthesis of cyclic hydroxamic acids through -NOH insertion of ketones. , 2009, Organic letters.

[13]  P. Bremer,et al.  Infrared spectroscopic studies of siderophore-related hydroxamic acid ligands adsorbed on titanium dioxide. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[14]  David Casanova,et al.  Shape maps and polyhedral interconversion paths in transition metal chemistry , 2005 .

[15]  S. Alvarez,et al.  Continuous Shape Measures as a Stereochemical Tool in Organometallic Chemistry , 2005 .

[16]  C. Ratledge,et al.  Iron chelation properties of an extracellular siderophore exochelin MN. , 2003, Journal of the American Chemical Society.

[17]  Santiago Alvarez,et al.  Continuous symmetry maps and shape classification. The case of six-coordinated metal compounds , 2002 .

[18]  Marvin J Miller,et al.  Total synthesis of exochelin MN and analogues. , 2002, The Journal of organic chemistry.

[19]  Shioiri,et al.  Nicotianamine chelates both FeIII and FeII. Implications for metal transport in plants , 1999, Plant physiology.

[20]  D. Avnir,et al.  Continuous Symmetry Measures. 5. The Classical Polyhedra. , 1998, Inorganic chemistry.

[21]  K. Raymond,et al.  Gallium(III) Catecholate Complexes as Probes for the Kinetics and Mechanism of Inversion and Isomerization of Siderophore Complexes1 , 1996 .

[22]  D. Williams,et al.  Determination of the structure of exochelin MN, the extracellular siderophore from Mycobacterium neoaurum. , 1995, Chemistry & biology.

[23]  K. Hult,et al.  Synthesis of cyclic hydroxamic acids by oxidation of secondary amines with dimethyldioxirane , 1993 .

[24]  K. Raymond,et al.  Solution equilibria of enterobactin and metal-enterobactin complexes , 1991 .

[25]  A. Rodger,et al.  Which is more likely: the Ray-Dutt twist or the Bailar twist? , 1988 .

[26]  A. L. Crumbliss,et al.  Factors that influence siderophoremediated iron bioavailability: catalysis of interligand iron (III) transfer from ferrioxamine B to EDTA by hydroxamic acids. , 1983, Journal of inorganic biochemistry.

[27]  S. Matlin,et al.  The oxidation of trimethylsilylated amides to hydroxamic acids , 1980 .

[28]  P. E. Clark,et al.  Models for the bacterial iron-transport chelate enterochelin , 1976, Nature.

[29]  S. S. Isied,et al.  Coordination isomers of biological iron transport compounds. VI. Models of the enterobactin coordination site. A crystal field effect in the structure of potassium tris(catecholato)chromate(III) and -ferrate(III) sesquihydrates, K3(M(O2C6H4)3)-1.5H2O, M = Cr, Fe1. , 1976, Journal of the American Chemical Society.

[30]  G. J. Palenik,et al.  Twist angle calculations. Fact or fantasy , 1975 .

[31]  S. Eaton,et al.  Intramolecular rearrangement reactions of tris-chelate complexes. IV. Rearrangements of tris(.alpha.-isopropenyl- and .alpha.-isopropyltropolonate)metal(III,IV) complexes , 1973 .

[32]  S. Matlin,et al.  A new method for the preparation of hydroxamic acids from secondary amides , 1972 .

[33]  J. Bailar Some problems in the stereochemistry of coordination compounds: Introductory lecture , 1958 .