Generating trees and the Catalan and Schröder numbers

Abstract A permutation π ϵ Sn avoids the subpattern τ iff π has no subsequence having all the same pairwise comparisons as τ, and we write π ϵ Sn(τ). We present a new bijective proof of the well-known result that /vbSn(123)/vb = /vbSn(132)/vb = cn, the nth Catalan number. A generalization to forbidden patterns of length 4 gives an asymptotic formula for the vexillary permutations. We settle a conjecture of Shapiro and Getu that /vbSn(3142,2413)/vb = sn -1, the Schroder number, and characterize the deque-sortable permutations of Knuth, also counted by sn - 1.

[1]  Zvezdelina Stankova Classification of Forbidden Subsequences of Length 4 , 1996, Eur. J. Comb..

[2]  C. Schensted Longest Increasing and Decreasing Subsequences , 1961, Canadian Journal of Mathematics.

[3]  Serge Dulucq,et al.  Permutations with forbidden subsequences and nonseparable planar maps , 1996, Discret. Math..

[4]  Amitai Regev,et al.  Asymptotic values for degrees associated with strips of young diagrams , 1981 .

[5]  Zvezdelina Stankova,et al.  Forbidden subsequences , 1994, Discret. Math..

[6]  S. Gire,et al.  Arbres, permutations à motifs exclus et cartes planaires : quelques problèmes algorithmiques et combinatoires , 1993 .

[7]  N. Sloane A Handbook Of Integer Sequences , 1973 .

[8]  Julian West,et al.  Permutations with forbidden subsequences, and, stack-sortable permutations , 1990 .

[9]  Rodica Simion,et al.  Some q-analogues of the Schröder numbers arising from combinatorial statistics on lattice paths , 1993 .

[10]  Fan Chung Graham,et al.  The Number of Baxter Permutations , 1978, J. Comb. Theory, Ser. A.

[11]  J. Shaw Combinatory Analysis , 1917, Nature.

[12]  Louis W. Shapiro,et al.  Bootstrap Percolation, the Schröder Numbers, and the N-Kings Problem , 1991, SIAM J. Discret. Math..

[13]  Alain Lascoux,et al.  Schubert polynomials and the Littlewood-Richardson rule , 1985 .

[14]  Dominique Gouyou-Beauchamps,et al.  Deux Propriétés Combinatoires Des Nombres De Schröder , 1988, RAIRO Theor. Informatics Appl..

[15]  Rodica Simion,et al.  Restricted Permutations , 1985, Eur. J. Comb..

[16]  Eugène Catalan,et al.  Note sur une équation aux différences finies , 2022 .

[17]  Ira M. Gessel,et al.  Symmetric functions and P-recursiveness , 1990, J. Comb. Theory, Ser. A.

[18]  D. G. Rogers,et al.  Some correspondences involving the schröder numbers and relations , 1978 .