Perceptual feedback in multigrid motion estimation using an improved DCT quantization

In this paper, a multigrid motion compensation video coder based on the current human visual system (HVS) contrast discrimination models is proposed. A novel procedure for the encoding of the prediction errors has been used. This procedure restricts the maximum perceptual distortion in each transform coefficient. This subjective redundancy removal procedure includes the amplitude nonlinearities and some temporal features of human perception. A perceptually weighted control of the adaptive motion estimation algorithm has also been derived from this model. Perceptual feedback in motion estimation ensures a perceptual balance between the motion estimation effort and the redundancy removal process. The results show that this feedback induces a scale-dependent refinement strategy that gives rise to more robust and meaningful motion estimation, which may facilitate higher level sequence interpretation. Perceptually meaningful distortion measures and the reconstructed frames show the subjective improvements of the proposed scheme versus an H.263 scheme with unweighted motion estimation and MPEG-like quantization.

[1]  J. Malo,et al.  Comparison of perceptually uniform quantisation with average error minimisation in image transform coding , 1999 .

[2]  Jesús Malo,et al.  Splitting criterion for hierarchical motion estimation based on perceptual coding , 1998 .

[3]  D J Heeger,et al.  Model for the extraction of image flow. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[4]  J.G. Daugman,et al.  Entropy reduction and decorrelation in visual coding by oriented neural receptive fields , 1989, IEEE Transactions on Biomedical Engineering.

[5]  Stefan Winkler,et al.  Issues in vision modeling for perceptual video quality assessment , 1999, Signal Process..

[6]  Jungwoo Lee Joint optimization of block size and quantization for quadtree-based motion estimation , 1998, IEEE Trans. Image Process..

[7]  Jesús Malo,et al.  Bit allocation algorithm for codebook design in vector quantisation fully based on human visual system nonlinearities for suprathreshold contrasts , 1995 .

[8]  Wolfgang Niehsen,et al.  Covariance analysis of motion-compensated frame differences , 1999, IEEE Trans. Circuits Syst. Video Technol..

[9]  B. Girod,et al.  Motion Compensation: Visual Aspects, Accuracy, and Fundamental Limits , 1993 .

[10]  Michael S. Landy,et al.  Pattern Discrimination, Visual Filters, and Spatial Sampling Irregularity , 1991 .

[11]  Frederic Dufaux,et al.  Motion-compensated generic coding of video based on a multiresolution data structure , 1993 .

[12]  J A Solomon,et al.  Model of visual contrast gain control and pattern masking. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[13]  Benoit M. Macq,et al.  Weighted Optimum Bit Allocations to Orthogonal Transforms for Picture Coding , 1992, IEEE J. Sel. Areas Commun..

[14]  Edward H. Adelson,et al.  Representing moving images with layers , 1994, IEEE Trans. Image Process..

[15]  Heidi A. Peterson,et al.  Luminance-model-based DCT quantization for color image compression , 1992, Electronic Imaging.

[16]  D. Legall,et al.  MPEG : A video compression standard for multimedia applications , 1991 .

[17]  오승준 [서평]「Digital Video Processing」 , 1996 .

[18]  Xinggang Lin,et al.  Sequential image coding based on multiresolution tree architecture , 1993 .

[19]  G. Legge A power law for contrast discrimination , 1981, Vision Research.

[20]  Andrew B. Watson,et al.  Visually optimal DCT quantization matrices for individual images , 1993, [Proceedings] DCC `93: Data Compression Conference.

[21]  M. Bierling,et al.  Displacement Estimation By Hierarchical Blockmatching , 1988, Other Conferences.

[22]  A B Watson,et al.  Efficiency of a model human image code. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[23]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[24]  Gunilla Borgefors,et al.  Distance transformations in digital images , 1986, Comput. Vis. Graph. Image Process..

[25]  Andrew B. Watson,et al.  DCT quantization matrices visually optimized for individual images , 1993, Electronic Imaging.

[26]  Didier Le Gall,et al.  MPEG: a video compression standard for multimedia applications , 1991, CACM.

[27]  A J Ahumada,et al.  Model of human visual-motion sensing. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[28]  Frederic Dufaux,et al.  Segmentation-Based Motion Estimation for Second Generation Video Coding Techniques , 1996 .

[29]  Touradj Ebrahimi,et al.  Dynamic approach to visual data compression , 1997, IEEE Trans. Circuits Syst. Video Technol..

[30]  Francesc J. Ferri,et al.  The role of perceptual contrast non-linearities in image transform quantization , 2000, Image Vis. Comput..

[31]  Jesús Malo,et al.  Subjective image fidelity metric based on bit allocation of the human visual system in the DCT domain , 1997, Image Vis. Comput..

[32]  Frederic Dufaux,et al.  Entropy criterion for optimal bit allocation between motion and prediction error information , 1993, Other Conferences.

[33]  Anthony G. Constantinides,et al.  Variable size block matching motion compensation with applications to video coding , 1990 .

[34]  Andrew B. Watson,et al.  Visibility of DCT basis functions: effects of contrast masking , 1994, Proceedings of IEEE Data Compression Conference (DCC'94).

[35]  Allen Gersho,et al.  Vector quantization and signal compression , 1991, The Kluwer international series in engineering and computer science.

[36]  D. H. Kelly Motion and vision. II. Stabilized spatio-temporal threshold surface. , 1979, Journal of the Optical Society of America.

[37]  Jeffrey B. Mulligan,et al.  Design and performance of a digital video quality metric , 1999, Electronic Imaging.

[38]  David García,et al.  A robust motion estimation and segmentation approach to represent moving images with layers , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[39]  Pascual Capilla,et al.  Image quality metric based on multidimensional contrast perception models , 1999 .

[40]  Aggelos K. Katsaggelos,et al.  Rate-Distortion Based Video Compression , 1997, Springer US.

[41]  King Ngi Ngan,et al.  Hybrid image coding scheme in incorporating human visual system characteristics , 1991 .

[42]  Robert J. Safranek,et al.  Signal compression based on models of human perception , 1993, Proc. IEEE.

[43]  Frederic Dufaux,et al.  Motion estimation techniques for digital TV: a review and a new contribution , 1995, Proc. IEEE.

[44]  S. Klein,et al.  Motion thresholds can be predicted from contrast discrimination. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.