Impact ionization characteristics of III-V semiconductors for a wide range of multiplication region thicknesses

Recently, an impact ionization model, which takes the nonlocal nature of the impact ionization process into account, has been described. This model incorporates history-dependent ionization coefficients. Excellent fits to experimental gain and noise measurements for GaAs were achieved using an effective field approach and simple analytical expressions for the ionization probabilities. In the paper, we briefly review the history-dependent model and apply it to Al/sub 0.2/Ga/sub 0.8/As, In/sub 0.52/Al/sub 0.48/As and InP avalanche photodiodes. For the study, the gain and noise characteristics of a series of homojunction avalanche photodiodes with different multiplication thicknesses were measured and fit with the history-dependent model. A "size-effect" in thin (<0.5 /spl mu/m) multiplication regions, which is not adequately characterized by the local-field avalanche theory, was observed for each of these materials. The history-dependent model, on the other hand, achieved close agreement with the experimental results.

[1]  Sethumadhavan Chandrasekhar,et al.  Multiplication noise of wide-bandwidth InP/InGaAsP/InGaAs avalanche photodiodes , 1989 .

[2]  C. R. Crowell,et al.  Ionization coefficients in semiconductors: A nonlocalized property , 1974 .

[3]  Karl Hess,et al.  Band-structure-dependent transport and impact ionization in GaAs , 1981 .

[4]  Factors affecting the ultimate capabilities of high speed avalanche photodiodes and a review of the state-of-the-art , 1973 .

[5]  A. Onton,et al.  Refractive Index of AlAs , 1971 .

[6]  G. E. Stillman,et al.  Impact ionization in AlxGa1−xAs for x=0.1–0.4 , 1988 .

[7]  C. Hu,et al.  A new look at impact ionization-Part II: Gain and noise in short avalanche photodiodes , 1999 .

[8]  J. Campbell,et al.  The effect of nonuniform gain on the multiplication noise of InP/InGaAsP/ InGaAs avalanche photodiodes , 1985 .

[9]  L. M. Rucker,et al.  Theory of carrier multiplication and noise in avalanche devices—Part II: Two-carrier processes , 1979, IEEE Transactions on Electron Devices.

[10]  A. Lacaita,et al.  Dead space approximation for impact ionization in silicon , 1996 .

[11]  Rajaram Bhat,et al.  Optical properties of AlxGa1−x As , 1986 .

[12]  K. Brennan,et al.  Experimental determination of impact ionization coefficients in , 1983, IEEE Electron Device Letters.

[13]  Bahaa E. A. Saleh,et al.  Effect of dead space on gain and noise in Si and GaAs avalanche photodiodes , 1992 .

[14]  C. Maziar,et al.  Monte Carlo analysis of band structure influence on impact ionization in InP , 1993 .

[15]  K. Fukushima,et al.  Impact ionization rates in , 1990, IEEE Electron Device Letters.

[16]  J. David,et al.  Monte Carlo simulation of impact ionization and current multiplication in short GaAs diodes , 1997 .

[17]  J. S. Marsland,et al.  On the effect of ionization dead spaces on avalanche multiplication and noise for uniform electric fields , 1990 .

[18]  A. A. Studna,et al.  Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV , 1983 .

[19]  Craig Armiento,et al.  Impact ionization in (100), (110), and (111) oriented InP avalanche photodiodes , 1983 .

[20]  R. Mcintyre Multiplication noise in uniform avalanche diodes , 1966 .

[21]  Y. Kamakura,et al.  Impact ionization model for full band Monte Carlo simulation , 1994 .

[22]  G. Samara Temperature and pressure dependences of the dielectric constants of semiconductors , 1983 .

[23]  Bahaa E. A. Saleh,et al.  Effect of dead space on gain and noise double-carrier-multiplication avalanche photodiodes , 1992, Optical Society of America Annual Meeting.

[24]  T. Torikai,et al.  Temperature dependence of impact ionization coefficients in InP , 1986 .

[25]  R. Mcintyre The distribution of gains in uniformly multiplying avalanche photodiodes: Theory , 1972 .

[26]  Joe C. Campbell,et al.  Performance of thin separate absorption, charge, and multiplication avalanche photodiodes , 1998 .

[27]  K. Brennan Calculated electron and hold spatial ionization profiles in bulk GaAs and superlattice avalanche photodiodes , 1988 .

[28]  Sano,et al.  Impact-ionization theory consistent with a realistic band structure of silicon. , 1992, Physical review. B, Condensed matter.

[29]  G. E. Stillman,et al.  Electron and hole impact ionization coefficients in InP determined by photomultiplication measurements , 1982 .

[30]  J. S. Marsland,et al.  Lucky drift estimation of excess noise factor for conventional avalanche photodiodes including the dead space effect , 1992 .

[31]  R. C. Tozer,et al.  Low avalanche noise characteristics in thin InP p/sup +/-i-n/sup +/ diodes with electron initiated multiplication , 1999, IEEE Photonics Technology Letters.

[32]  J. David,et al.  A simple model to determine multiplication and noise in avalanche photodiodes , 1998 .

[33]  A. Lacaita,et al.  Mean gain of avalanche photodiodes in a dead space model , 1996 .

[34]  Joe C. Campbell,et al.  Noise characteristics of thin multiplication region GaAs avalanche photodiodes , 1996 .

[35]  K. Seeger Temperature dependence of the dielectric constants of semi‐insulating III‐V compounds , 1989 .

[36]  R. J. McIntyre,et al.  A new look at impact ionization-Part I: A theory of gain, noise, breakdown probability, and frequency response , 1999 .

[37]  J.C. Campbell,et al.  Resonant-cavity InGaAs-InAlAs avalanche photodiodes with gain-bandwidth product of 290 GHz , 1999, IEEE Photonics Technology Letters.

[38]  T. Mikawa,et al.  Impact ionization coefficients of electrons and holes in , 1985 .

[39]  J. Bude,et al.  Thresholds of impact ionization in semiconductors , 1992 .

[40]  John P. R. David,et al.  Avalanche multiplication noise characteristics in thin GaAs p/sup +/-i-n/sup +/ diodes , 1998 .