Using Double Well Function as a Benchmark Function for Optimization Algorithm
暂无分享,去创建一个
[1] J. D. Swalen,et al. Potential Function for the Inversion of Ammonia , 1962 .
[2] Wang Pen,et al. Multi-Scale Quantum Harmonic Oscillator for High-Dimensional Function Global Optimization Algorithm , 2013 .
[3] J. Sjöstrand. Potentials wells in high dimensions II, more about the one well case , 1993 .
[4] M. W. Johnson,et al. Quantum annealing with manufactured spins , 2011, Nature.
[5] Christian Igel,et al. Efficient covariance matrix update for variable metric evolution strategies , 2009, Machine Learning.
[6] Weiss,et al. Quantum tunneling rates for asymmetric double-well systems with Ohmic dissipation. , 1985, Physical review letters.
[7] Wenbo Xu,et al. Particle swarm optimization with particles having quantum behavior , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).
[8] Erio Tosatti,et al. Optimization by quantum annealing: Lessons from simple cases , 2005, cond-mat/0502129.
[9] Hiroshi Takeuchi,et al. Clever and Efficient Method for Searching Optimal Geometries of Lennard-Jones Clusters , 2006, J. Chem. Inf. Model..
[10] Ying Tan,et al. The bare bones fireworks algorithm: A minimalist global optimizer , 2018, Appl. Soft Comput..
[11] J. Doll,et al. Quantum annealing: A new method for minimizing multidimensional functions , 1994, chem-ph/9404003.