Competing through altering the environment: A cross-diffusion population model coupled to transport–Darcy flow equations

Abstract We consider an evolution model describing the spatial population distribution of two salt tolerant plant species, such as mangroves, which are affected by inter- and intra-specific competition (Lotka–Volterra), population pressure (cross-diffusion) and environmental heterogeneity (environmental potential). The environmental potential and the Lotka–Volterra terms are assumed to depend on the salt concentration in the root region, which may change as a result of mangroves’ ability to uptake fresh water and leave the salt of the solution behind, in the saturated porous medium. Consequently, partial differential equations modelling the population dynamics on the surface are coupled with Darcy–transport equations modelling the salt and pressure-velocity distribution in the subsurface. We prove the existence of weak solutions of the coupled problem and provide a numerical discretization based on a stabilized mixed finite element method, which we use to numerically demonstrate the behaviour of the system.

[1]  H. Gajewski,et al.  Global Behaviour of a Reaction‐Diffusion System Modelling Chemotaxis , 1998 .

[2]  Abimael F. D. Loula,et al.  A unified mixed formulation naturally coupling Stokes and Darcy flows , 2009 .

[3]  G. Burton Sobolev Spaces , 2013 .

[4]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[5]  M. C. Lombardo,et al.  A velocity--diffusion method for a Lotka--Volterra system with nonlinear cross and self-diffusion , 2009 .

[6]  Yuan Lou,et al.  Diffusion, Self-Diffusion and Cross-Diffusion , 1996 .

[7]  A. Lugo,et al.  The Ecology of Mangroves , 1974 .

[8]  Philippe Angot,et al.  On the well-posed coupling between free fluid and porous viscous flows , 2011, Appl. Math. Lett..

[9]  Ansgar Jüngel,et al.  A Parabolic Cross-Diffusion System for Granular Materials , 2003, SIAM J. Math. Anal..

[10]  Yi Wang,et al.  The Global Existence of Solutions for a Cross-diffusion System , 2005 .

[11]  A. Hacinliyan,et al.  Stability and bifurcation in two species predator–prey models , 2011 .

[12]  Paul Deuring,et al.  An initial-boundary-value problem for a certain density-dependent diffusion system , 1987 .

[13]  Gonzalo Galiano,et al.  Analysis and numerical solution of a nonlinear cross-diffusion system arising in population dynamics , 2001 .

[14]  Xinfu Chen,et al.  Evolution of conditional dispersal: a reaction–diffusion–advection model , 2008, Journal of mathematical biology.

[15]  Dongxiao Zhang,et al.  Convective stability analysis of the long-term storage of carbon dioxide in deep saline aquifers , 2006 .

[16]  John W. Barrett,et al.  Finite element approximation of a nonlinear cross-diffusion population model , 2004, Numerische Mathematik.

[17]  R. Hambrock,et al.  The Evolution of Conditional Dispersal Strategies in Spatially Heterogeneous Habitats , 2009, Bulletin of mathematical biology.

[18]  A. Marrocco,et al.  Numerical simulation of chemotactic bacteria aggregation via mixed finite elements , 2003 .

[19]  Phan Van Tuoc,et al.  On global existence of solutions to a cross-diffusion system , 2008 .

[20]  Gonzalo Galiano,et al.  Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model , 2003, Numerische Mathematik.

[21]  Masayasu Mimura,et al.  Spatial segregation in competitive interaction-diffusion equations , 1980 .

[22]  M. Ball,et al.  Mangroves may salinize the soil and in so doing limit their transpiration rate , 1992 .

[23]  Maoan Han,et al.  Chaos and Hopf bifurcation analysis for a two species predator–prey system with prey refuge and diffusion , 2011 .

[24]  A diffusion-convection problem with drainage arising in the ecology of mangroves , 2001 .

[25]  Thomas J. R. Hughes,et al.  A stabilized mixed finite element method for Darcy flow , 2002 .

[26]  J. U. Kim,et al.  Smooth solutions to a quasi-linear system of diffusion equations for a certain population model☆ , 1984 .

[27]  Ansgar Jüngel,et al.  Analysis of a Multidimensional Parabolic Population Model with Strong Cross-Diffusion , 2004, SIAM J. Math. Anal..

[28]  N. Shigesada,et al.  Spatial segregation of interacting species. , 1979, Journal of theoretical biology.

[29]  Yuan Lou,et al.  Does movement toward better environments always benefit a population , 2003 .

[30]  G. Galiano,et al.  A dynamic boundary value problem arising in the ecology of mangroves , 2006 .

[31]  M. Ball Salinity tolerance in the mangroves Aegiceras corniculatum and Avicennia marina. I: Water use in relation to growth, carbon partitioning, and salt balance , 1988 .

[32]  C. J. Duijn,et al.  Existence of solutions and stability analysis for a Darcy flow with extraction , 2009 .

[33]  Atsushi Yagi Global solution to some quasilinear parabolic system in population dynamics , 1993 .

[34]  H. Bhadeshia Diffusion , 1995, Theory of Transformations in Steels.

[35]  D. DeAngelis,et al.  A simulation model for projecting changes in salinity concentrations and species dominance in the coastal margin habitats of the Everglades , 2008 .