Crystal structure of NaCl-type transition metal monocarbides MC (M = V, Ti, Nb, Ta, Hf, Zr), a neutron powder diffraction study

Abstract Crystal structure of NaCl-type transition metal monocarbides MC (M = V, Ti, Nb, Ta, Hf and Zr) has been investigated by Rietveld analysis of neutron powder diffraction data measured at 23 °C. The unit-cell parameter a of MC compounds increased with increasing of ionic radius of the metal species M. Structural change of the tantalum carbide TaC from 23 to 413 °C has been investigated by Rietveld analysis of in situ neutron diffraction data. The unit-cell parameter a, unit-cell volume and atomic displacement parameter of TaC increased with increasing of temperature. The thermal expansion coefficient of TaC was estimated to be (6.4 ± 0.3) × 10−6 °C−1.

[1]  R. O. Elliott,et al.  Thermal Expansion of Some Transition Metal Carbides , 1958 .

[2]  P. Shaffer,et al.  High-Temperature Thermal Expansion Behavior of Refractory Materials: I, Selected Monocarbides and Binary Carbides , 1964 .

[3]  R. Tellgren,et al.  A neutron powder diffraction study of Ta2C and W2C , 1986 .

[4]  C. K. Jun Thermal Expansion of NbC, HfC, and TaC at High Temperatures , 1970 .

[5]  L. Toth Transition Metal Carbides and Nitrides , 1971 .

[6]  C. P. Kempter,et al.  Thermal Expansion of Tantalum Monocarbide to 3020°C , 1965 .

[7]  Jörg Fink,et al.  Dielectric properties of TiC x , TiN x , VC x , and VN x from 1.5 to 40 eV determined by electron-energy-loss spectroscopy , 1984 .

[8]  H. Goretzki,et al.  Magnetische Untersuchungen der Carbide TiC, ZrC, HfC, VC, NbC und TaC , 1962 .

[9]  J. A. Kohn,et al.  Industrial Diamond Substitutes: I, Physical and X-Ray Study of Hafnium Carbide , 1954 .

[10]  P. Ehrlich Über die binären Systeme des Titans mit den Elementen Stickstoff, Kohlenstoff, Bor und Beryllium , 1949 .

[11]  E. Storms,et al.  Thermal expansion of some niobium carbides , 1967 .

[12]  E. Rudy,et al.  Constitution of Ternary Ta‐Mo‐C Alloys , 1968 .

[13]  H. Wiedemeier,et al.  Estimation of thermal expansion behaviour of some refractory carbides and nitrides , 1997 .

[14]  R. F. Brenton,et al.  Elastic properties and thermal expansion of niobium mono-carbide to high temperatures , 1969 .

[15]  E. Storms,et al.  The Variation of Lattice Parameter with Carbon Content of Niobium Carbide , 1959 .

[16]  F. Ebert,et al.  Die Kristallstruktur einiger binärer Carbide und Nitride , 1925 .

[17]  R. Fries,et al.  Effect of Stoichiometry on the Thermal Expansion of TaCx , 1967 .

[18]  N. Schonberg THE COMPOSITION OF THE PHASES IN THE VANADIUM-CARBON SYSTEM , 1954 .

[19]  K. Ohoyama,et al.  The New Neutron Powder Diffractometer with a Multi-Detector System for High-Efficiency and High-Resolution Measurements , 1998 .

[20]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[21]  A. F. Wells,et al.  Structural Inorganic Chemistry , 1971, Nature.

[22]  F. Izumi,et al.  A Rietveld-Analysis Programm RIETAN-98 and its Applications to Zeolites , 2000 .

[23]  G. Brauer,et al.  Die Carbide des Niobs , 1954 .

[24]  Sven J. Cyvin,et al.  The Temperature Factor Parameters of Some Transition Metal Carbides and Nitrides by Single Crystal X-Ray and Neutron Diffraction. , 1978 .

[25]  J. H. Richardson Thermal Expansion of Three Group IVA Carbides to 2700°C , 1965 .

[26]  A. L. Bowman THE VARIATION OF LATTICE PARAMETER WITH CARBON CONTENT OF TANTALUM CARBIDE1 , 1961 .

[27]  Y. Zhou,et al.  Electronic and structural properties of the layered ternary carbide Ti3AlC2 , 2001 .

[28]  C. R. Hquska Thermal Expansion of Certain Group IV and Group V Carbides at High Temperatures , 1964 .