Symmetry and Pattern Formation in Coupled Cell Networks

We describe some basic concepts and techniques from symmetric bifurcation theory in the context of coupled systems of cells (‘oscillator networks’). These include criteria for the existence of symmetry-breaking branches of steady and periodic states. We emphasize the role of symmetry as a general framework for such analyses. As well as overt symmetries of the network we discuss internal symmetries of the cells, ‘hidden’ symmetries related to Neumann boundary conditions, and spatio-temporal symmetries of periodic states. The methods are applied to a model central pattern generator for legged animal locomotion.

[1]  I. Stewart,et al.  Symmetry-breaking bifurcation: A possible mechanism for 2:1 frequency-locking in animal locomotion , 1992, Journal of mathematical biology.

[2]  G. Ermentrout,et al.  Phase transition and other phenomena in chains of coupled oscilators , 1990 .

[3]  S. Grillner Locomotion in vertebrates: central mechanisms and reflex interaction. , 1975, Physiological reviews.

[4]  Symmetry-Breaking Bifurcations of Wreath Product Systems , 1999 .

[5]  M. Field HETEROCLINIC CYCLES IN SYMMETRICALLY COUPLED SYSTEMS , 1999 .

[6]  Gerhard Dangelmayr,et al.  Hopf bifurcation withD3 ×D3-symmetry , 1993 .

[7]  Martin Golubitsky,et al.  Symmetric patterns in linear arrays of coupled cells. , 1993, Chaos.

[8]  Branching in the Presence of Symmetry , 1987 .

[9]  Ian Stewart,et al.  A modular network for legged locomotion , 1998 .

[10]  I. Labouriau,et al.  Spatial hidden symmetries in pattern formation , 1999 .

[11]  Ian Stewart,et al.  Hopf bifurcation with dihedral group symmetry - Coupled nonlinear oscillators , 1986 .

[12]  G. Ermentrout,et al.  Multiple pulse interactions and averaging in systems of coupled neural oscillators , 1991 .

[13]  S. Smale,et al.  A Mathematical Model of Two Cells Via Turing’s Equation , 1976 .

[14]  Michael Dellnitz,et al.  Cycling chaos , 1995 .

[15]  Ian Stewart,et al.  Coupled cells with internal symmetry: I. Wreath products , 1996 .

[16]  Giampaolo Cicogna,et al.  Symmetry breakdown from bifurcation , 1981 .

[17]  P. Stein Motor systems, with specific reference to the control of locomotion. , 1978, Annual review of neuroscience.

[18]  S. Rossignol,et al.  Neural Control of Rhythmic Movements in Vertebrates , 1988 .

[19]  Carson C. Chow,et al.  Aperiodic stochastic resonance. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[20]  André Vanderbauwhede,et al.  Local bifurcation and symmetry , 1982 .

[21]  F. Plum Handbook of Physiology. , 1960 .

[22]  G. Ermentrout,et al.  Coupled oscillators and the design of central pattern generators , 1988 .

[23]  G. Ermentrout,et al.  Symmetry and phaselocking in chains of weakly coupled oscillators , 1986 .

[24]  Hopf bifurcations in three coupled oscillators with internal symmetries , 1998 .

[25]  R. McNeill Alexander,et al.  Mechanics and energetics of animal locomotion , 1977 .

[26]  Martin Golubitsky,et al.  Patterns in Square Arrays of Coupled Cells , 1997 .

[27]  M. Golubitsky,et al.  Hopf Bifurcation in the presence of symmetry , 1985 .

[28]  Hideo Yuasa,et al.  Generation of Locomotive Patterns and Self-Organization , 1992, J. Robotics Mechatronics.

[29]  I. Stewart,et al.  Coupled nonlinear oscillators and the symmetries of animal gaits , 1993 .

[30]  G. Ermentrout,et al.  Forcing of coupled nonlinear oscillators: studies of intersegmental coordination in the lamprey locomotor central pattern generator. , 1990, Journal of neurophysiology.

[31]  Coupled oscillators with internal symmetries , 1995 .

[32]  M. Golubitsky,et al.  Coupled Cells: Wreath Products and Direct Products , 1994 .

[33]  J. Alexander,et al.  Patterns at primary Hopf bifurcations at a plexus of identical oscillators , 1986 .

[34]  Martin Golubitsky,et al.  Coupled arrays of Josephson junctions and bifurcation of maps with SN symmetry , 1991 .

[35]  P. Holmes,et al.  The nature of the coupling between segmental oscillators of the lamprey spinal generator for locomotion: A mathematical model , 1982, Journal of mathematical biology.

[36]  S. Grillner,et al.  Neural networks for vertebrate locomotion. , 1996, Scientific American.

[37]  Hopf bifurcation for wreath products , 1998 .

[38]  M. Field Lectures on bifurcations, dynamics and symmetry , 1996 .

[39]  S. Grillner Neurobiological bases of rhythmic motor acts in vertebrates. , 1985, Science.

[40]  S. Grillner Control of Locomotion in Bipeds, Tetrapods, and Fish , 1981 .

[41]  J. Parlange,et al.  Water uptake, diameter change, and nonlinear diffusion in tree stems. , 1975, Plant physiology.

[42]  Gerhard Dangelmayr,et al.  Synchronized patterns in hierarchical networks of neuronal oscillators with D 3 × D 3 symmetry , 1998 .

[43]  M. L. Shik,et al.  Neurophysiology of locomotor automatism. , 1976, Physiological reviews.

[44]  G Schöner,et al.  A synergetic theory of quadrupedal gaits and gait transitions. , 1990, Journal of theoretical biology.

[45]  K. Pearson Common principles of motor control in vertebrates and invertebrates. , 1993, Annual review of neuroscience.

[46]  Pascal Chossat,et al.  Dynamics, Bifurcation and Symmetry , 1994 .