Detection of microgauss coherent magnetic fields in a galaxy five billion years ago

[1]  Bin Chen,et al.  Identifying the lens galaxy B 1152+199 as a ghostly damped Lyman α system by the cosmic origins spectrograph , 2016, 1612.04848.

[2]  P. Kronberg Cosmic Magnetic Fields , 2016 .

[3]  S. Lilly,et al.  FARADAY ROTATION MEASURE SYNTHESIS OF INTERMEDIATE REDSHIFT QUASARS AS A PROBE OF INTERVENING MATTER , 2016, 1604.00028.

[4]  Jun Xu,et al.  Extragalactic dispersion measures of fast radio bursts , 2015, 1504.00200.

[5]  Michelle L. Wilson,et al.  A SPECTROSCOPIC SURVEY OF THE FIELDS OF 28 STRONG GRAVITATIONAL LENSES: THE GROUP CATALOG , 2015, 1503.02074.

[6]  A. Shukurov,et al.  MAGNETIC FIELDS IN A SAMPLE OF NEARBY SPIRAL GALAXIES , 2014, 1411.1386.

[7]  S. Suyu,et al.  Radio monitoring campaigns of six strongly lensed quasars , 2014, 1410.6557.

[8]  I. Momcheva,et al.  A SPECTROSCOPIC SURVEY OF THE FIELDS OF 28 STRONG GRAVITATIONAL LENSES , 2015 .

[9]  L. Rudnick,et al.  COMPARISON OF ALGORITHMS FOR DETERMINATION OF ROTATION MEASURE AND FARADAY STRUCTURE. I. 1100–1400 MHZ , 2014, 1409.4151.

[10]  B. M. Gaensler,et al.  FARADAY ROTATION FROM MAGNESIUM II ABSORBERS TOWARD POLARIZED BACKGROUND RADIO SOURCES , 2014, 1406.2526.

[11]  H. Chand,et al.  Dependence of residual rotation measure on intervening Mg II absorbers at cosmic distances , 2013, 1307.2678.

[12]  V. Kaspi,et al.  THE CORRELATION BETWEEN DISPERSION MEASURE AND X-RAY COLUMN DENSITY FROM RADIO PULSARS , 2013, 1303.5170.

[13]  R. Perley,et al.  INTEGRATED POLARIZATION PROPERTIES OF 3C48, 3C138, 3C147, AND 3C286 , 2013, 1302.6662.

[14]  A. R. Taylor,et al.  Complex Faraday depth structure of active galactic nuclei as revealed by broad‐band radio polarimetry , 2012, 1201.3161.

[15]  B. Gaensler,et al.  MAGNETIC FIELDS IN LARGE-DIAMETER H ii REGIONS REVEALED BY THE FARADAY ROTATION OF COMPACT EXTRAGALACTIC RADIO SOURCES , 2011, 1106.0931.

[16]  Shea Brown,et al.  INTEGRATED POLARIZATION OF SOURCES AT λ ∼ 1 m AND NEW ROTATION MEASURE AMBIGUITIES , 2011, 1103.4149.

[17]  K. Freeman,et al.  Galaxy Disks , 2011, 1101.1771.

[18]  D. Ryu,et al.  FARADAY ROTATION MEASURE DUE TO THE INTERGALACTIC MAGNETIC FIELD. II. THE COSMOLOGICAL CONTRIBUTION , 2011 .

[19]  D. Ryu,et al.  FARADAY ROTATION MEASURE DUE TO THE INTERGALACTIC MAGNETIC FIELD , 2010, 1009.0570.

[20]  Ievgen Vovk,et al.  Evidence for Strong Extragalactic Magnetic Fields from Fermi Observations of TeV Blazars , 2010, Science.

[21]  C. Lintott,et al.  Galaxy Zoo: Dust in Spirals , 2010, 1001.1744.

[22]  C. Lintott,et al.  Galaxy Zoo: Dust in Spiral Galaxies , 2010 .

[23]  T. Landecker,et al.  The Dynamic Interstellar Medium: A Celebration of the Canadian Galactic Plane Survey , 2010 .

[24]  M. Hanasz,et al.  GLOBAL GALACTIC DYNAMO DRIVEN BY COSMIC RAYS AND EXPLODING MAGNETIZED STARS , 2009, 0907.4891.

[25]  D. O. Astronomy,et al.  The Westerbork SINGS survey - II Polarization, Faraday rotation, and magnetic fields , 2009, 0905.3995.

[26]  C. Kochanek,et al.  DIFFERENTIAL X-RAY ABSORPTION AND DUST-TO-GAS RATIOS OF THE LENS GALAXIES SBS 0909+523, FBQS 0951+2635, AND B 1152+199 , 2008, 0803.1679.

[27]  Marita Krause,et al.  Evolution of magnetic fields in galaxies and future observational tests with the Square Kilometre Array , 2008, 0810.3114.

[28]  P. S. Bunclark,et al.  Astronomical Data Analysis Software and Systems , 2008 .

[29]  S. Lilly,et al.  Strong magnetic fields in normal galaxies at high redshift , 2008, Nature.

[30]  J. Brown,et al.  The Outer Scale of Turbulence in the Magnetoionized Galactic Interstellar Medium , 2008, 0802.2740.

[31]  IoA,et al.  A homogeneous sample of sub-damped Lyman systems – IV. Global metallicity evolution , 2007, 0707.2697.

[32]  Emmanuel Dormy,et al.  Mathematical Aspects of Natural Dynamos , 2007 .

[33]  J. Brown,et al.  Rotation Measures of Extragalactic Sources behind the Southern Galactic Plane: New Insights into the Large-Scale Magnetic Field of the Inner Milky Way , 2007, 0704.0458.

[34]  J. Prochaska,et al.  Damped Lyman alpha Systems , 2005, astro-ph/0509481.

[35]  K. Institute,et al.  Faraday rotation measure synthesis , 2005, astro-ph/0507349.

[36]  M. Wolleben,et al.  The Magnetic Field of the Large Magellanic Cloud Revealed Through Faraday Rotation , 2005, Science.

[37]  S. Chitre,et al.  LARGE SCALE MAGNETIC FIELDS IN LENS GALAXIES , 2004 .

[38]  S. Myers,et al.  High-resolution observations and mass modelling of the CLASS gravitational lens B1152+199 , 2001, astro-ph/0110099.

[39]  Liège,et al.  The extinction curve of the lensing galaxy of B1152+199 at z =0 :44 ? , 2000, astro-ph/0003098.

[40]  O. Törnkvist The origin of cosmic magnetic fields ∗ , 2000 .

[41]  A. G. de Bruyn,et al.  CLASS B1152+199 and B1359+154: Two New Gravitational Lens Systems Discovered in the Cosmic Lens All-Sky Survey , 1999, astro-ph/9905043.

[42]  J. E. Pesce,et al.  TIDALLY INDUCED STAR FORMATION IN ABELL 1367 , 1998 .

[43]  D. Sokoloff,et al.  Depolarization and Faraday effects in galaxies , 1998 .

[44]  D. Sokoloff,et al.  Galactic Magnetism: Recent developments and perspectives , 1996 .

[45]  M. Wright,et al.  A retrospective view of Miriad , 2006, astro-ph/0612759.

[46]  A. Wolfe,et al.  A Faraday rotation search for magnetic fields in quasar damped Ly alpha absorption systems , 1995 .

[47]  R. Chini,et al.  Dust in spiral galaxies. I , 1993 .

[48]  V. Faraoni On the rotation of polarization by a gravitational lens , 1992, astro-ph/9211012.

[49]  P. Kronberg,et al.  Discovery of Extended Faraday Rotation Compatible with Spiral Structure in an Intervening Galaxy at Z = 0.395: New Observations of PKS 1229-021 , 1992 .

[50]  Jason X. Prochaska,et al.  DAMPED LY SYSTEMS , 2005 .

[51]  A. Ruzmaikin Magnetic fields of galaxies , 1988 .

[52]  J. Leahy Small-scale variations in the Galactic Faraday rotation , 1987 .

[53]  Alexander Ruzmaikin,et al.  Magnetic fields of spiral galaxies , 1986 .

[54]  M. Bodanszky Recent Developments and Perspectives , 1984 .

[55]  S. Chandrasekhar On Cosmic Magnetic Fields , 1957 .