Heat Invariants of the Steklov Problem

We study the heat trace asymptotics associated with the Steklov eigenvalue problem on a Riemannian manifold with boundary. In particular, we describe the structure of the Steklov heat invariants and compute the first few of them explicitly in terms of the scalar and mean curvatures. This is done by applying the Seeley calculus to the Dirichlet-to-Neumann operator, whose spectrum coincides with the Steklov eigenvalues. As an application, it is proved that a three-dimensional ball is uniquely defined by its Steklov spectrum among all Euclidean domains with smooth connected boundary.

[1]  Siye Wu,et al.  Determinant of the Neumann operator on smooth Jordan curves , 1991 .

[2]  M. Zworski,et al.  Resonant Rigidity of S2 , 1999 .

[3]  Gian-Carlo Rota,et al.  The analysis of partial differential operators: I. Hormander, Springer, 1985, Vol. 1, 391 pp.; Vol. 2, 390 pp.; Vol. 3, 525 pp.; Vol. 4, 351 pp. , 1986 .

[4]  Richard Schoen,et al.  The first Steklov eigenvalue, conformal geometry, and minimal surfaces , 2009, 0912.5392.

[5]  I. Polterovich Combinatorics of the Heat Trace on Spheres , 2001, Canadian Journal of Mathematics.

[6]  Binoy,et al.  Sharp upper bound and a comparison theorem for the first nonzero Steklov eigenvalue , 2012, 1208.1690.

[7]  Peter B. Gilkey,et al.  Asymptotic Formulae in Spectral Geometry , 2003 .

[8]  Antoine Henrot,et al.  Extremum Problems for Eigenvalues of Elliptic Operators , 2006 .

[9]  Ahmad El Soufi,et al.  Isoperimetric control of the Steklov spectrum , 2011, 1103.2863.

[10]  I. Holopainen Riemannian Geometry , 1927, Nature.

[11]  Michael E. Taylor,et al.  Partial Differential Equations II: Qualitative Studies of Linear Equations , 1996 .

[12]  J. Lira,et al.  CONSTANT HIGHER-ORDER MEAN CURVATURE HYPERSURFACES IN RIEMANNIAN SPACES , 2003, Journal of the Institute of Mathematics of Jussieu.

[13]  Pierre Jammes Prescription du spectre de Steklov dans une classe conforme , 2012, 1209.4571.

[14]  E. M. Hartwell Boston , 1906 .

[15]  J. Edward,et al.  An inverse spectral result for the Neumann operator on planar domains , 1993 .

[16]  S. Tanno Eigenvalues of the Laplacian of Riemannian manifolds , 1973 .

[17]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[18]  Peter B. Gilkey,et al.  Logarithmic terms in asymptotic expansions of heat operator traces , 1998 .

[19]  V. Guillemin,et al.  The spectrum of positive elliptic operators and periodic bicharacteristics , 1975 .

[20]  S. Goldberg A uniqueness theorem for surfaces in the large , 1977 .

[21]  V. Guillemin The radon transform on zoll surfaces , 1976 .

[22]  A. Besse Manifolds all of whose Geodesics are Closed , 2011 .

[23]  Robert Weinstock,et al.  Inequalities for a Classical Eigenvalue Problem , 1954 .

[24]  Friedemann Brock,et al.  An Isoperimetric Inequality for Eigenvalues of the Stekloff Problem , 2001 .

[25]  Brian Davies,et al.  Partial Differential Equations II , 2002 .

[26]  P. Hislop,et al.  Spectral asymptotics of the Dirichlet-to-Neumann map on multiply connected domains in R d , 2001 .

[27]  Robert T. Seeley,et al.  Complex powers of an elliptic operator , 1967 .

[28]  M. Agranovich Some asymptotic formulas for elliptic pseudodifferential operators , 1987 .

[29]  G. Grubb,et al.  Weakly parametric pseudodifferential operators and Atiyah-Patodi-Singer boundary problems , 1995 .

[30]  Iosif Polterovich,et al.  Upper bounds for Steklov eigenvalues on surfaces , 2012, 1202.5108.

[31]  R. Schoen,et al.  Sharp eigenvalue bounds and minimal surfaces in the ball , 2012, 1209.3789.

[32]  S. Zelditch Maximally degenerate laplacians , 1996 .

[33]  John M. Lee,et al.  Determining anisotropic real-analytic conductivities by boundary measurements , 1989 .

[34]  I. Polterovich,et al.  Multiplicity bounds for Steklov eigenvalues on Riemannian surfaces , 2012, 1209.4869.

[35]  C. Stolk The Radon transform , 2014 .

[36]  Iosif Polterovich,et al.  Shape optimization for low Neumann and Steklov eigenvalues , 2008, 0811.2617.