When one is not enough: introgression of mitochondrial DNA in Drosophila.

The specific purpose of this study is to investigate alternate processes that may have resulted in the formation of the two distinct mitochondrial haplotypes (maI and maII) of Drosophila mauritiana. The most plausible explanation for the observed data is that there has been introgression of Drosophila simulans mtDNA into D. mauritiana. More generally, this article addresses three important issues concerning resolution of species relationships. First, pooling data from distinct process partitions has the potential to obscure biologically informative patterns of substitution (Bull et al. 1993; Ballard et al. 1998). Second, hypothesizing a species phylogeny from a single linkage partition may be problematic (reviewed by Doyle 1992; Avise 1994). Third, phylogenetic hypotheses may be influenced by the inclusion of a single representative of a terminal taxon (Omland, Lanyon, and Fritz 1999). Multiple unlinked loci and multiple individuals from within species that exhibit extensive population subdivision should be included to maximize the potential to fully resolve species relationships. Slowinski and Page (1999) identified two levels of potential error when inferring species phylogenies from molecular sequence data. First, a gene tree for a set of molecular sequences may be incorrectly inferred if there is sufficient systematic or random error (Swofford et al. 1996). Second, even if a gene tree is correctly inferred, deep coalescence, retention of ancestral polymorphism, gene duplication, and horizontal gene transfer among different species can produce a gene tree that differs from the species tree (Doyle 1992; Avise 1994). This second source of error may be confounded if the nucleotides are linked such that there is a single gene tree, or genealogy. As an example, genes in organelle genomes such as metazoan mtDNA are historically linked with no recombination (but see Awadalla, Eyre-Walker, and Maynard Smith 1999; Eyre-Walker, Smith, and Maynard Smith 1999; Hagelberg et al. 1999). In this case, phylogenetic hypotheses from different mtDNA genes can only infer the mitochondrial genealogy, which may or may not be the same as the true species tree. The well-corroborated mitochondrial genealogy of the Drosophila melanogaster subgroup implies that D. mauritiana is paraphyletic relative to D. simulans and Drosophila sechellia (Solignac and Monnerot 1986; Satta and Takahata 1990; Ballard 2000). One explanation for this result is that the mtDNA genealogy does not reflect the species relationships. The phylogenetic relationships

[1]  A. C. James,et al.  EXPRESSION OF CYTOPLASMIC INCOMPATIBILITY IN DROSOPHILA SIMULANS AND ITS IMPACT ON INFECTION FREQUENCIES AND DISTRIBUTION OF WOLBACHIA PIPIENTIS , 2000, Evolution; international journal of organic evolution.

[2]  J. Ballard,et al.  Comparative Genomics of Mitochondrial DNA in Members of the Drosophila melanogaster Subgroup , 2000, Journal of Molecular Evolution.

[3]  P. Awadalla,et al.  Linkage disequilibrium and recombination in hominid mitochondrial DNA. , 1999, Science.

[4]  R. Page,et al.  How should species phylogenies be inferred from sequence data? , 1999, Systematic biology.

[5]  N. Takahata,et al.  Paleo-demography of the Drosophila melanogaster subgroup: application of the maximum likelihood method. , 1999, Genes & genetic systems.

[6]  S. Lanyon,et al.  A molecular phylogeny of the New World orioles (Icterus): the importance of dense taxon sampling. , 1999, Molecular phylogenetics and evolution.

[7]  D. Swofford,et al.  Taxon sampling revisited , 1999, Nature.

[8]  E. Hagelberg,et al.  Evidence for mitochondrial DNA recombination in a human population of island Melanesia , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[9]  A. Eyre-Walker,et al.  How clonal are human mitochondria? , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[10]  Jeffrey R. Powell,et al.  Progress and Prospects in Evolutionary Biology: The Drosophila Model , 1997 .

[11]  J. True,et al.  QUANTITATIVE GENETIC ANALYSIS OF DIVERGENCE IN MALE SECONDARY SEXUAL TRAITS BETWEEN DROSOPHILA SIMULANS AND DROSOPHILA MAURITIANA , 1997, Evolution; international journal of organic evolution.

[12]  M. Kreitman,et al.  Reduced variation in Drosophila simulans mitochondrial DNA. , 1996, Genetics.

[13]  J. Powell,et al.  A molecular phylogeny for the Drosophila melanogaster subgroup and the problem of polymorphism data. , 1996, Molecular biology and evolution.

[14]  D. Hillis Inferring complex phytogenies , 1996, Nature.

[15]  D. Hillis Inferring complex phylogenies. , 1996, Nature.

[16]  M. Kreitman,et al.  Is mitochondrial DNA a strictly neutral marker? , 1995, Trends in ecology & evolution.

[17]  L. Kann,et al.  Neutral and non-neutral evolution of Drosophila mitochondrial DNA. , 1994, Genetics.

[18]  C. Bult,et al.  TESTING SIGNIFICANCE OF INCONGRUENCE , 1994 .

[19]  John C. Avise,et al.  Molecular Markers, Natural History and Evolution , 1993, Springer US.

[20]  C. Aquadro,et al.  African and North American populations of Drosophila melanogaster are very different at the DNA level , 1993, Nature.

[21]  J. Bull,et al.  Partitioning and combining data in phylogenetic analysis , 1993 .

[22]  J. Hey,et al.  Population genetics and phylogenetics of DNA sequence variation at multiple loci within the Drosophila melanogaster species complex. , 1993, Molecular biology and evolution.

[23]  J. Hey,et al.  DNA sequence variation at the period locus within and among species of the Drosophila melanogaster complex. , 1993, Genetics.

[24]  J. Doyle,et al.  Gene Trees and Species Trees: Molecular Systematics as One-Character Taxonomy , 1992 .

[25]  N. Takahata,et al.  Evolution of Drosophila mitochondrial DNA and the history of the melanogaster subgroup. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[26]  N. Takahata,et al.  Incomplete maternal transmission of mitochondrial DNA in Drosophila. , 1990, Genetics.

[27]  M. Solignac,et al.  EXPERIMENTAL EVIDENCE FOR MITOCHONDRIAL DNA INTROGRESSION BETWEEN DROSOPHILA SPECIES , 1990, Evolution; international journal of organic evolution.

[28]  A. Kluge A Concern for Evidence and a Phylogenetic Hypothesis of Relationships among Epicrates (Boidae, Serpentes) , 1989 .

[29]  J. David,et al.  Drosophila communities on Mauritius and the ecological niche of D. mauritiana (Diptera, Drosophilidae) , 1989 .

[30]  D. Higgins,et al.  See Blockindiscussions, Blockinstats, Blockinand Blockinauthor Blockinprofiles Blockinfor Blockinthis Blockinpublication Clustal: Blockina Blockinpackage Blockinfor Blockinperforming Multiple Blockinsequence Blockinalignment Blockinon Blockina Minicomputer Article Blockin Blockinin Blockin , 2022 .

[31]  J. David,et al.  Mitochondrial DNA variability in Drosophila simulans: quasi absence of polymorphism within each of the three cytoplasmic races , 1988, Heredity.

[32]  N. Takahata,et al.  Dubious maternal inheritance of mitochondrial DNA in D-simulans and evolution of D. mauritiana , 1988 .

[33]  J. Powell,et al.  Rates and patterns of scnDNA and mtDNA divergence within the Drosophila melanogaster subgroup. , 1988, Genetics.

[34]  M. Ashburner,et al.  Historical Biogeography of the Drosophila melanogaster Species Subgroup , 1988 .

[35]  B. Efron The jackknife, the bootstrap, and other resampling plans , 1987 .

[36]  M. Solignac,et al.  RACE FORMATION, SPECIATION, AND INTROGRESSION WITHIN DROSOPHILA SIMULANS, D. MAURITIANA, AND D. SECHELLIA INFERRED FROM MITOCHONDRIAL DNA ANALYSIS , 1986, Evolution; international journal of organic evolution.

[37]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[38]  H. Robertson MATING BEHAVIOR AND THE EVOLUTION OF DROSOPHILA MAURITIANA , 1983, Evolution; international journal of organic evolution.

[39]  J. Coyne GENETIC BASIS OF DIFFERENCES IN GENITAL MORPHOLOGY AMONG THREE SIBLING SPECIES OF DROSOPHILA , 1983, Evolution; international journal of organic evolution.

[40]  J. Farris,et al.  The implications of congruence in Menidia , 1981 .

[41]  J. David,et al.  Drosophila mauritiana n. sp. du groupe melanogaster de l'Ile Maurice [Dipt. Drosophilidae] , 1974, Bulletin de la Société entomologique de France.