Electronic structure and band offsets of high-dielectric-constant gate oxides

Identifying candidate materials to replace SiO 2 as the gate dielectric for complementary metal oxide semiconductor (CMOS) applications is a difficult task. Proper assessment of the critical materials requirements is essential, and it is important to devise an approach to predict materials properties without having to make many unnecessary measurements on high-K materials. Such an approach helps to eliminate unlikely candidates and focus on the most promising ones. Clearly, this type of modeling approach requires an understanding of several physical and chemical characteristics, including the bonding and electronic structure, band alignment with Si, and the nature of the dielectric constant and interface properties. We present a critical assessment of some existing methods and models of materials properties, as well as a comparison of the present modeling approach with some experimentally determined values.

[1]  I. Lindau,et al.  Unified Mechanism for Schottky-Barrier Formation and III-V Oxide Interface States , 1980 .

[2]  A. Demkov Investigating Alternative Gate Dielectrics: A Theoretical Approach , 2001 .

[3]  R. Wallace,et al.  Alternative Gate Dielectrics for Microelectronics , 2002 .

[4]  R. D. Shannon Dielectric polarizabilities of ions in oxides and fluorides , 1993 .

[5]  Ching,et al.  Electronic and optical properties of yttria. , 1990, Physical review letters.

[6]  Baroni,et al.  Band offsets in lattice-matched heterojunctions: A model and first-principles calculations for GaAs/AlAs. , 1988, Physical review letters.

[7]  J. E. Rowe,et al.  Band offsets for ultrathin SiO2 and Si3N4 films on Si(111) and Si(100) from photoemission spectroscopy , 1999 .

[8]  J. Robertson Band offsets of wide-band-gap oxides and implications for future electronic devices , 2000 .

[9]  S. Louie,et al.  Structural properties and quasiparticle band structure of zirconia , 1998 .

[10]  Wei,et al.  Role of d orbitals in valence-band offsets of common-anion semiconductors. , 1987, Physical review letters.

[11]  E. Garfunkel,et al.  Soft x-ray photoemission studies of the HfO2/SiO2/Si system , 2002 .

[12]  L. Mattheiss Energy Bands for KNiF_{3}, SrTiO_{3}, KMoO_{3}, and KTaO_{3} , 1972 .

[13]  S. Pennycook,et al.  Hydrogen and the Structure of the Transition Aluminas , 1999 .

[14]  D. Dimaria Effects on interface barrier energies of metal‐aluminum oxide‐semiconductor (MAS) structures as a function of metal electrode material, charge trapping, and annealing , 1974 .

[15]  John Robertson,et al.  Band offsets and Schottky barrier heights of high dielectric constant oxides , 2002 .

[16]  Seiichi Miyazaki,et al.  Characterization of high-k gate dielectric/silicon interfaces , 2002 .

[17]  Tersoff,et al.  Schottky barriers and semiconductor band structures. , 1985, Physical review. B, Condensed matter.

[18]  R. Mckee,et al.  Crystalline Oxides on Silicon: The First Five Monolayers , 1998 .

[19]  C. Hu,et al.  Modeling CMOS tunneling currents through ultrathin gate oxide due to conduction- and valence-band electron and hole tunneling , 2001 .

[20]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[21]  Steven G. Louie,et al.  Ionicity and the theory of Schottky barriers , 1977 .

[22]  Jon-Paul Maria,et al.  Alternative dielectrics to silicon dioxide for memory and logic devices , 2000, Nature.

[23]  Daniel M. Fleetwood,et al.  Mechanism for anneal‐induced interfacial charging in SiO2 thin films on Si , 1996 .

[24]  H. Osten,et al.  Photoemission and ab initio theoretical study of interface and film formation during epitaxial growth and annealing of praseodymium oxide on Si(001) , 2002 .

[25]  Park,et al.  Effect of interstitial hydrogen impurities on ferroelectric polarization in PbTiO3 , 2000, Physical review letters.

[26]  G. Lucovsky,et al.  Electronic states at the interface of Ti–Si oxide on Si(100) , 2002 .

[27]  R. Devine,et al.  Concentration dependence of the dielectric constant in mixed oxides MxOyMp′Oq , 2001 .

[28]  W. Mönch,et al.  Metal-semiconductor contacts: electronic properties , 1994 .

[29]  T. C. Mcgill,et al.  Band Offsets in Semiconductor Heterojunctions , 1992 .

[30]  A. Shluger,et al.  Structure and electrical levels of point defects in monoclinic zirconia , 2001 .

[31]  Van de Walle Cg Band lineups and deformation potentials in the model-solid theory. , 1989 .

[32]  Z. Weinberg,et al.  On tunneling in metal‐oxide‐silicon structures , 1982 .

[33]  Gian-Marco Rignanese,et al.  First-principles study of structural, electronic, dynamical, and dielectric properties of zircon , 2001 .

[34]  R. Droopad,et al.  Band discontinuities at epitaxial SrTiO3/Si(001) heterojunctions , 2000 .

[35]  W. Harrison Elementary theory of heterojunctions , 1977 .

[36]  Model for the charge trapping in high permittivity gate dielectric stacks , 2001 .

[37]  H. Ade,et al.  Electronic structure of high-k transition metal oxides and their silicate and aluminate alloys , 2002 .

[38]  Seiichi Miyazaki,et al.  Photoemission study of energy-band alignments and gap-state density distributions for high-k gate dielectrics , 2001 .

[39]  Andre Stesmans,et al.  Internal photoemission of electrons and holes from (100)Si into HfO2 , 2002 .

[40]  J. J. Krajewski,et al.  Enhancement of the dielectric constant of Ta2O5through substitution with TiO2 , 1995, Nature.

[41]  Ching,et al.  Self-consistent band structures, charge distributions, and optical-absorption spectra in MgO, alpha -Al2O3, and MgAl2O4. , 1991, Physical review. B, Condensed matter.

[42]  W. Harrison Elementary Electronic Structure , 1999 .

[43]  W. Mönch Chemical trends of barrier heights in metal-semiconductor contacts: on the theory of the slope parameter , 1996 .

[44]  Stathis,et al.  Atomic hydrogen reactions with Pb centers at the (100) Si/SiO2 interface. , 1994, Physical review letters.

[45]  C. W. Chen,et al.  Schottky barrier heights of tantalum oxide, barium strontium titanate, lead titanate, and strontium bismuth tantalate , 1999 .

[46]  Chenming Hu,et al.  Direct tunneling leakage current and scalability of alternative gate dielectrics , 2002 .

[47]  R. Wallace,et al.  High-κ gate dielectrics: Current status and materials properties considerations , 2001 .

[48]  D. Vanderbilt,et al.  First-principles investigation of ferroelectricity in perovskite compounds. , 1994, Physical review. B, Condensed matter.

[49]  H. Osten,et al.  Band gap and band discontinuities at crystalline Pr2O3/Si(001) heterojunctions , 2002 .

[50]  R. French Electronic Band Structure of {Al2O3}, with Comparison to Alon and {AIN} , 1990 .

[51]  Christensen,et al.  Acoustic deformation potentials and heterostructure band offsets in semiconductors. , 1987, Physical review. B, Condensed matter.

[52]  R. Droopad,et al.  Band offset and structure of SrTiO3 /Si(001) heterojunctions , 2001 .

[53]  Eduard A. Cartier,et al.  Local transport and trapping issues in Al2O3 gate oxide structures , 2000 .

[54]  T. Jackson,et al.  Dielectric functions and optical bandgaps of high-K dielectrics for metal-oxide-semiconductor field-effect transistors by far ultraviolet spectroscopic ellipsometry , 2002 .

[55]  G. Lucovsky Transition from thermally grown gate dielectrics to deposited gate dielectrics for advanced silicon devices: A classification scheme based on bond ionicity , 2001 .

[56]  D. Schlom,et al.  Thermodynamic stability of binary oxides in contact With silicon , 1996 .

[57]  J. Dow,et al.  Role of surface antisite defects in the formation of Schottky barriers , 1982 .

[58]  R. Droopad,et al.  Study of Microstructure in SrTiO_3/Si by High-resolution Transmission Electron Microscopy , 2002 .

[59]  A. Stesmans,et al.  Electron energy barriers between (100)Si and ultrathin stacks of SiO2, Al2O3, and ZrO2 insulators , 2001 .

[60]  P. Griffin,et al.  First principles investigation of scaling trends of zirconium silicate interface band offsets , 2001 .

[61]  N. Zakharov,et al.  NANO-phase SBT-family ferroelectric memories , 1998 .

[62]  A. H. Kahn,et al.  Electronic Polarizabilities of Ions in Crystals , 1953 .

[63]  G. Lucovsky,et al.  Nonlinear composition dependence of x-ray photoelectron spectroscopy and Auger electron spectroscopy features in plasma-deposited zirconium silicate alloy thin films , 2002 .

[64]  Structure and energetics of the Si- SiO2 interface , 1999, Physical review letters.

[65]  Ching,et al.  Experimental and theoretical determination of the electronic structure and optical properties of three phases of ZrO2. , 1994, Physical review. B, Condensed matter.

[66]  Mönch Role of virtual gap states and defects in metal-semiconductor contacts. , 1987, Physical review letters.

[67]  L. Brillson Metal-semiconductor interfaces , 1994 .