Ab initio studies of layering behavior of liquid sodium surfaces and interfaces.

We have studied the liquid surface of sodium with extensive ab initio molecular dynamics simulations based on ensemble density-functional theory. We find clear evidence of layering in the direction perpendicular to the surface that persists to temperatures more than 100 K above the melting point. We also observe clear Friedel oscillations in the electronic density response to the presence of a surface, but their direct effect on atomic layering is ruled out. A careful finite-size effect analysis accompanies our results, showing that liquid slabs 20-25 A thick capture the essential details of the surface structure. We conclude that geometrical confinement is the common cause for layer formation, which is similar to what happens at a liquid-solid interface: at a free liquid surface, the rapid decay of the electronic density from the bulk liquid value to zero in the vapor forms a hard wall against which the atoms pack. Finally, we predict x-ray reflectivities from ab initio molecular dynamics data that include some of the large surface-normal wave vector-transfer regions that, for alkali metals, are not accessible to experiments.

[1]  M. J. Stott,et al.  Interplay between the ionic and electronic density profiles in liquid metal surfaces. , 2005, The Journal of chemical physics.

[2]  M. J. Stott,et al.  Liquid-vapor interface in liquid binary alloys: an ab initio molecular dynamics study. , 2005, Physical Review Letters.

[3]  B. Ocko,et al.  Crystalline phases of alkyl-thiol monolayers on liquid mercury. , 2005, Physical review letters.

[4]  B. Ocko,et al.  Atomic-scale surface demixing in a eutectic liquid BiSn alloy. , 2005, Physical review letters.

[5]  N. Marzari,et al.  Ab initio molecular dynamics of metal surfaces , 2004 .

[6]  Cambridge,et al.  Surface layering of liquids: The role of surface tension , 2004, cond-mat/0406579.

[7]  B. Ocko,et al.  Anomalous layering at the liquid Sn surface , 2004, cond-mat/0406583.

[8]  Cambridge,et al.  Surface structure of liquid metals and the effect of capillary waves: X-ray studies on liquid indium , 2004, cond-mat/0406582.

[9]  Giulia Galli,et al.  Self-healing of CdSe nanocrystals: first-principles calculations. , 2004, Physical review letters.

[10]  M. J. Stott,et al.  Surface structure of liquid Li and Na: an ab initio molecular dynamics study. , 2004, Physical review letters.

[11]  B. Ocko,et al.  X-ray Study of the Liquid Potassium Surface: Structure and Capillary Wave Excitations , 2003, cond-mat/0406585.

[12]  P. Tarazona,et al.  Low melting temperature and liquid surface layering for pair potential models , 2002 .

[13]  B. Ocko,et al.  Structure of a Langmuir Film on a Liquid Metal Surface , 2002, Science.

[14]  P. Tarazona,et al.  Layering structures at free liquid surfaces: The Fisher-Widom line and the capillary waves , 2002 .

[15]  F. Gygi,et al.  Electronic excitations and the compressibility of deuterium , 2002 .

[16]  J. Adler,et al.  Atomistic study of structural correlations at a liquid–solid interface , 2001, cond-mat/0112492.

[17]  P. Tarazona,et al.  Layering at free liquid surfaces. , 2001, Physical review letters.

[18]  T. Lippmann,et al.  Observation of ® ve-fold local symmetry in liquid lead , 2022 .

[19]  B. Ocko,et al.  Microscopic Surface Structure of Liquid Alkali Metals , 2000, cond-mat/0412109.

[20]  B. Ocko,et al.  Surface-induced order in liquid metals and binary alloys , 2000, cond-mat/0412110.

[21]  France.,et al.  Atomic layering at the liquid silicon surface: A first-principles simulation , 1999, cond-mat/9907380.

[22]  S. Rice,et al.  The structure of the liquid-vapor interface of a gallium-tin binary alloy , 1999 .

[23]  Astronomy,et al.  THERMAL CONTRACTION AND DISORDERING OF THE AL(110) SURFACE , 1999, cond-mat/9903147.

[24]  B. Ocko,et al.  X-ray Reflectivity Study of Temperature-Dependent Surface Layering in Liquid Hg , 1998 .

[25]  S. Rice,et al.  Comparison of the structures of the liquid-vapor interfaces of Al, Ga, In, and Tl , 1998 .

[26]  S. Rice,et al.  Structure of the liquid-vapor interface of a metal from a simple model potential: Corresponding states of the alkali metals , 1998 .

[27]  S. Rice,et al.  Quantum Monte Carlo simulations of the structure in the liquid–vapor interface of BiGa binary alloys , 1998 .

[28]  S. Rice,et al.  Structure of liquid Ga and the liquid-vapor interface of Ga. , 1997 .

[29]  S. Rice,et al.  Structure of the liquid–vapor interface of a Sn:Ga alloy , 1997 .

[30]  V. Heine,et al.  Sliding mechanisms in aluminum grain boundaries , 1997 .

[31]  M. J. Regan,et al.  X-ray Reflectivity Studies of Liquid Metal and Alloy Surfaces , 1997 .

[32]  M. J. Regan,et al.  X-ray study of the oxidation of liquid-gallium surfaces , 1997 .

[33]  P. Feibelman FRIEDEL OSCILLATIONS IN THE FORCE CONSTANTS OF METALS , 1997 .

[34]  E. Tosatti,et al.  Can Liquid Metal Surfaces Have Hexatic Order , 1997, cond-mat/9703163.

[35]  D. Vanderbilt,et al.  Ensemble density-functional theory for ab initio molecular dynamics of metals and finite-temperature insulators , 1997, cond-mat/9703081.

[36]  S. Rice,et al.  In‐plane structure of the liquid–vapor interfaces of dilute bismuth:gallium alloys: X‐ray‐scattering studies , 1996 .

[37]  M. J. Regan,et al.  Self-assembly of organic films on a liquid metal , 1996, Nature.

[38]  Regan,et al.  Capillary-wave roughening of surface-induced layering in liquid gallium. , 1996, Physical review. B, Condensed matter.

[39]  M. J. Regan,et al.  X-ray Studies of Atomic Layering at Liquid Metal Surfaces , 1996 .

[40]  S. Rice,et al.  Surface segregation and layering in the liquid–vapor interface of a dilute bismuth:gallium alloy , 1996 .

[41]  M. J. Regan,et al.  Surface layering in liquid gallium: An X-ray reflectivity study. , 1995, Physical review letters.

[42]  M. J. Regan,et al.  X-ray reflectivity measurements of surface layering in liquid mercury. , 1995, Physical review letters.

[43]  S. Rice,et al.  SELF-CONSISTENT MONTE CARLO SIMULATION OF THE ELECTRON AND ION DISTRIBUTIONS IN THE LIQUID-VAPOR INTERFACE OF MAGNESIUM , 1994 .

[44]  Deutsch,et al.  X-ray reflectivity study of the surface of liquid gallium. , 1993, Physical review. B, Condensed matter.

[45]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[46]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[47]  Paxton,et al.  High-precision sampling for Brillouin-zone integration in metals. , 1989, Physical review. B, Condensed matter.

[48]  P. Carnevali,et al.  Structure and correlations of a liquid metal surface: Gold , 1989 .

[49]  S. Rice,et al.  Self‐consistent Monte Carlo simulations of the electron and ion distributions of inhomogeneous liquid alkali metals. I. Longitudinal and transverse density distributions in the liquid–vapor interface of a one‐component system , 1987 .

[50]  S. Rice Research overview: The liquid-vapor interface of a metal as a vehicle for studying the atomic, electronic, and optical properties of an inhomogeneous liquid , 1987 .

[51]  S. Rice,et al.  An experimental study of the in‐plane distribution of atoms in the liquid–vapor interface of mercury , 1987 .

[52]  J. Als-Nielsen The liquid vapour interface , 1985 .

[53]  S. Rice,et al.  Comment on the structures of the liquid-vapor interfaces of Na and Na-Cs alloys , 1984 .

[54]  S. Rice,et al.  A pseudoatom theory for the liquid–vapor interface of simple metals: Computer simulation studies of sodium and cesium , 1983 .

[55]  S. Rice,et al.  A study of the liquid–vapor interface of mercury: Computer simulation results , 1983 .

[56]  S. Rice,et al.  Experimental and theoretical studies of the density profile in the liquid–vapor interface of Cs , 1983 .

[57]  Steven G. Louie,et al.  Nonlinear ionic pseudopotentials in spin-density-functional calculations , 1982 .

[58]  William G. Hoover,et al.  High-strain-rate plastic flow studied via nonequilibrium molecular dynamics , 1982 .

[59]  S. Rice,et al.  Structure in the Density Profile at the Liquid-Metal-Vapor Interface , 1981 .

[60]  S. Rice,et al.  Determination of the density profile in the liquid–vapor interface near the triple point , 1978 .

[61]  A. Baldereschi,et al.  Mean-Value Point in the Brillouin Zone , 1973 .

[62]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .

[63]  N. Mermin Thermal Properties of the Inhomogeneous Electron Gas , 1965 .

[64]  R. Feynman Forces in Molecules , 1939 .

[65]  S. Rice,et al.  Computer simulation study of the structure of the liquid-vapor interface of mercury at 20, 100, and 200 °C , 1999 .

[66]  Ismail,et al.  Oscillatory lattice relaxation at metal surfaces , 1999 .

[67]  S. Rice,et al.  The liquid-vapor interface density profiles and the surface pair correlation functions of sodium and a sodium-cesium alloy , 1984 .

[68]  John S. Rowlinson,et al.  Molecular Theory of Capillarity , 1983 .