Stable crack propagation in free standing thermal sprayed Al2O3 and Al2O3ZrO2TiO2 coatings

[1]  G. Schneider,et al.  A geometric model for the fracture toughness of porous materials , 2018, Acta Materialia.

[2]  O. Guillon,et al.  Correlation of splat morphologies with porosity and residual stress in plasma-sprayed YSZ coatings , 2017 .

[3]  Günter Schiller,et al.  The 2016 Thermal Spray Roadmap , 2016, Journal of Thermal Spray Technology.

[4]  C. Aneziris,et al.  Microstructure and strength of fused high alumina materials with 2.5 wt% zirconia and 2.5 wt% titania additions for refractory applications , 2015 .

[5]  G. Schneider,et al.  Automated Control of Stable Crack Growth for R-Curve Measurements in Brittle Materials , 2013 .

[6]  J. Malzbender,et al.  Fracture Resistance of Atmospheric Plasma Sprayed Thermal Barrier Coatings , 2012 .

[7]  J. Malzbender,et al.  Controlled Crack Propagation Experiments with a Novel Alumina‐Based Refractory , 2012 .

[8]  C. Blasi,et al.  Microstructure, mechanical properties and thermal shock resistance of plasma sprayed nanostructured zirconia coatings , 2011 .

[9]  C. Aneziris,et al.  Mechanical properties of flame sprayed free-standing coatings , 2011 .

[10]  C. Aneziris,et al.  Thermal Shock Behavior of Flame-Sprayed Free-Standing Coatings Based on Al2O3 with TiO2- and ZrO2-Additions , 2011 .

[11]  C. Aneziris,et al.  Improved Thermal Shock Performance of Sintered Mg–Partially Stabilized Zirconia with Alumina and Titania Additions , 2011 .

[12]  C. Aneziris,et al.  Amorphous zones in flame sprayed alumina–titania–zirconia compounds , 2011 .

[13]  P. Fauchais,et al.  Mechanical and tribological performance of Al2O3-TiO2 coatings elaborated by flame and plasma spraying , 2010 .

[14]  T. Sadowski,et al.  Dynamic Fracture Toughness of Porous Ceramics , 2010 .

[15]  C. Aneziris,et al.  Thermal Shock Performance of Fine Grained Al2O3 Ceramics With TiO2 and ZrO2 Additions for Refractory Applications , 2010 .

[16]  A. Watcharapasorn,et al.  Fabrication and properties of plasma-sprayed Al2O3/TiO2 composite coatings: A role of nano-sized TiO2 addition , 2010 .

[17]  Chonggui Li,et al.  Toughening and strengthening mechanism of plasma sprayed nanostructured Al2O3–13 wt.%TiO2 coatings , 2009 .

[18]  R. Ritchie,et al.  On the Fracture Toughness of Advanced Materials , 2009 .

[19]  J. Kübler Fracture Toughness of Ceramics Using the Sevnb Method: Preliminary Results , 2008 .

[20]  M. Prudenziati,et al.  Quantitative determination of the amorphous phase in plasma sprayed alumina coatings using the Rietveld method , 2006 .

[21]  A. Evans,et al.  Crack‐Growth Resistance of Microcracking Brittle Materials , 2006 .

[22]  Manuel F. M. Costa,et al.  Characterization of thermal barrier coatings with a gradient in porosity , 2005 .

[23]  J. Chevalier,et al.  Quantitative Analysis of Crack Shielding Degradation During Cyclic Fatigue of Alumina , 2004 .

[24]  B. Kear,et al.  Metastable Phase Formation in Plasma‐Sprayed ZrO2 (Y2O3)–Al2O3 , 2003 .

[25]  George A. Gogotsi,et al.  Fracture toughness of ceramics and ceramic composites , 2003 .

[26]  C. J. Li,et al.  Relationships between the microstructure and properties of thermally sprayed deposits , 2002 .

[27]  Guo‐Jun Zhang,et al.  Microstructure and Mechanical Properties of Porous Alumina Ceramics Fabricated by the Decomposition of Aluminum Hydroxide , 2001 .

[28]  Ganesh Skandan,et al.  Plasma-sprayed nanostructured Al2O3/TiO2 powders and coatings , 2000 .

[29]  J. Rödel,et al.  Evolution of defect size and strength of porous alumina during sintering , 2000 .

[30]  Theo Fett,et al.  Ceramics: Mechanical Properties, Failure Behaviour, Materials Selection , 1999 .

[31]  R. Damani,et al.  Microstructure, strength and fracture characteristics of a free-standing plasma-sprayed alumina , 1997 .

[32]  T. W. Clyne,et al.  Residual Stresses in Thermal Spray Coatings and Their Effect on Interfacial Adhesion: A Review of Recent Work , 1996 .

[33]  L. C. Jonghe,et al.  In Situ Toughened Silicon Carbide with Al‐B‐C Additions , 1996 .

[34]  Rolf W. Steinbrech,et al.  Cyclic fatigue in monolithic alumina: mechanisms for crack advance promoted by frictional wear of grain bridges , 1995, Journal of Materials Science.

[35]  T. Clyne,et al.  The quenching stress in thermally sprayed coatings , 1991 .

[36]  M. Ashby,et al.  R-curve behaviour of Al2O3 ceramics , 1990 .

[37]  M. Swain R‐Curve Behavior and Thermal Shock Resistance of Ceramics , 1990 .

[38]  T. Fett,et al.  Indirect Measurements of Compliances in Four-Point-Bending Tests , 1988 .

[39]  G. C. Wei,et al.  Toughening Behavior in Sic‐Whisker‐Reinforced Alumina , 1984 .

[40]  P. Fauchais,et al.  Thermal spraying of ceramics , 1984 .

[41]  R. Steinbrech,et al.  Increase of crack resistance during slow crack growth in Al2O3 bend specimens , 1983 .

[42]  M. Swain,et al.  Dependence of Fracture Toughness of Alumina on Grain Size and Test Technique , 1982 .

[43]  R. Steinbrech,et al.  Memory effect of crack resistance during slow crack growth in notched Al2O3 bend specimens , 1982 .

[44]  R. Mcpherson On the formation of thermally sprayed alumina coatings , 1980 .

[45]  W. Jillek,et al.  Sub-critical crack extension and crack resistance in polycrystalline alumina , 1977 .

[46]  G. W. Hollenberg,et al.  Calculation of Stresses and Strains in Four‐Point Bending Creep Tests , 1971 .

[47]  D. Hasselman Strength Behavior of Polycrystalline Alumina Subjected to Thermal Shock , 1970 .

[48]  R. S. Gordon,et al.  Creep of Polycrystalline MgO and MgO‐Fe2O3 Solid Solutions at High Temperatures , 1970 .

[49]  D. Hasselman,et al.  Unified Theory of Thermal Shock Fracture Initiation and Crack Propagation in Brittle Ceramics , 1969 .