Surface plasmon polaritons launched using a terahertz free-electron laser: propagation along a gold–ZnS–air interface and decoupling to free waves at the surface edge

In this paper, we experimentally study the propagation of surface plasmon polaritons (SPPs) along gold–ZnS–air interfaces and their diffraction at the surface edge. The SPPs were launched by the waveguide method using monochromatic radiation of the Novosibirsk Free-Electron Laser, operated at the wavelength 140 μm. SPP characteristics were studied via examination of the electromagnetic field of diffracted waves employing two terahertz sensors: a movable Golay cell and an optical system, consisting of a TPX lens and a 320×240 microbolometer focal plane array (MBFPA) recording images with a rate of 17  frames/s. The experimentally recorded intensity distribution of the diffracted wave in the direction normal to the surface differed from the evanescence wave distribution in the SPP, but their characteristic widths were practically the same and coincided with the theoretical calculations made within the Drude model [Phys. Rev. A87, 023828 (2013)]. Diffracted wave characteristics drastically changed when ZnS-layer thickness increased from 0 to 0.75 μm. The angular distributions grew from 0.16 to 3.6 deg, but the characteristic beam width decreased from 8 to 0.35 mm, which is promising for a number of applications. The propagation length of SPPs therewith decreased from 31 to 11 mm, which is 3 orders of magnitude less than the Drude theory predicts. Prospects for further studies are discussed.

[1]  Oleg Mitrofanov,et al.  Imaging of terahertz surface plasmon waves excited on a gold surface by a focused beam. , 2011, Optics express.

[2]  I. V. Marchishin,et al.  Application of uncooled microbolometer detector arrays for recording radiation of the terahertz spectral range , 2011 .

[3]  G. Stegeman,et al.  High efficiency coupling to the overcoated surface plasmon mode in the far infrared , 1984 .

[4]  George I. Stegeman,et al.  Attenuation of far‐infrared surface plasmons on overcoated metal , 1986 .

[5]  K. Unterrainer,et al.  Excitation of terahertz surface plasmon polaritons on etched groove gratings , 2009 .

[6]  Withawat Withayachumnankul,et al.  A Review on Thin-film Sensing with Terahertz Waves , 2012 .

[7]  G. Stegeman,et al.  Far‐infrared surface plasmon coupling with overcoated gratings , 1982 .

[8]  W. Mcneill,et al.  Far infrared surface plasmon propagation , 1981 .

[9]  G. Zhizhin,et al.  Surface Electromagnetic Wave Propagation on Metal Surfaces , 1982 .

[10]  B. Knyazev,et al.  Diffraction of a surface wave on a conducting rectangular wedge , 2013, 1301.3715.

[11]  Vera B. Zon,et al.  Reflection, refraction, and transformation into photons of surface plasmons on a metal wedge , 2007 .

[12]  Heinrich Kurz,et al.  Time-domain measurements of surface plasmon polaritons in the terahertz frequency range , 2004 .

[13]  J. Coutaz,et al.  THz surface plasmon jump between two metal edges , 2007 .

[14]  R. F. Wallis,et al.  Surface polariton reflection and radiation at end faces , 1983 .

[15]  R. T. Ling,et al.  THE PROPAGATION AND EXCITATION OF SURFACE WAVES IN AN ABSORBING LAYER , 1998 .

[16]  James Lloyd-Hughes,et al.  A Review of the Terahertz Conductivity of Bulk and Nano-Materials , 2012 .

[17]  J. Coutaz,et al.  Surface plasmon THz waves on gratings , 2008 .

[18]  A. J. Sievers,et al.  ir surface-plasmon attenuation coefficients for Ge-coated Ag and Au metals , 1982 .

[19]  Tae-In Jeon,et al.  THz surface wave collapse on coated metal surfaces. , 2009, Optics express.

[20]  U. Fano,et al.  The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfeld’s Waves) , 1941 .

[21]  D. Kim,et al.  Optical and terahertz near-field studies of surface plasmons in subwavelength metallic slits , 2008 .

[22]  J. Coutaz,et al.  Terahertz Surface Waves Propagating on Metals with Sub-wavelength Structure and Grating Reliefs , 2011 .

[23]  G. Zhizhin,et al.  MEETINGS AND CONFERENCES: Spectroscopy of Surface Waves and the Properties of the Surface , 1975 .

[24]  Koichiro Tanaka,et al.  Resonant phase jump with enhanced electric field caused by surface phonon polariton in terahertz region. , 2008, Optics express.

[25]  E. H. Sondheimer,et al.  The evaluation of the surface impedance in the theory of the anomalous skin effect in metals , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[26]  Diffraction d'une onde lectromagntique de surface par l'extrmit du support de propagation , 1984 .

[27]  Daniel R. Grischkowsky,et al.  THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet , 2006 .

[28]  Nikolay A. Vinokurov,et al.  Novosibirsk terahertz free electron laser: instrumentation development and experimental achievements , 2010 .

[29]  R. B. Dingle The anomalous skin effect and the reflectivity of metals , 1951 .

[30]  I. Vurgaftman,et al.  Transmission efficiency of surface plasmon polaritons across gaps in gold waveguides , 2010 .

[31]  A. Rukhadze,et al.  On the existence conditions for a fast surface wave , 2012 .

[32]  Absorption of surface plasmons in a metal-cladding layer-air structure in the terahertz frequency range , 2006 .

[33]  I. Pockrand,et al.  Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings , 1978 .

[34]  A. Sommerfeld Ueber die Fortpflanzung elektrodynamischer Wellen längs eines Drahtes , 1899 .

[35]  Dawson,et al.  Imaging of surface plasmon propagation and edge interaction using a photon scanning tunneling microscope. , 1994, Physical review letters.

[36]  L. S. Mukina,et al.  Propagation of THz plasmon pulse on corrugated and flat metal surface , 2006 .

[37]  Yang,et al.  Long-range surface modes supported by thin films. , 1991, Physical review. B, Condensed matter.

[38]  Stephen S. Attwood,et al.  Surface‐Wave Propagation Over a Coated Plane Conductor , 1951 .

[39]  S. Al-bader,et al.  Diffraction of surface plasmon-polaritons in an abruptly terminated dielectric-metal interface , 1995, IEEE Photonics Technology Letters.

[40]  R. J. Bell,et al.  Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. , 1983, Applied optics.

[41]  R. J. Bell,et al.  Propagation distances of surface electromagnetic waves in the far infrared , 1979 .

[42]  A. Sievers,et al.  Absolute measurement of the far-infrared surface resistance of Pb , 1972 .

[43]  George I. Stegeman,et al.  The optics of surface and guided wave polaritons , 1990 .