Modeling and Solving AFs with a Constraint-Based Tool: ConArg

ConArg is a tool based on Constraint Programming which is able to model and solve different problems related to Argumentation Frameworks (AFs). To practically implement the tool, we have used JaCoP, a Java library which provides the user with a Finite Domain Constraint Programming paradigm. Constraint Satisfaction Problems (CSPs) offer a wide number of efficient techniques (as inference and search algorithms) that can tackle the complexity in finding all the possible Dung's conflict-free, admissible, complete and stable extensions in AFs. Moreover, we can use the tool to solve some of the preference-based problems presented in literature. ConArg is able to randomly generate networks with small-world properties in order to find Dung's extensions on such interaction graphs. We present the main features of ConArg and we report the performance in time.

[1]  Stefano Bistarelli,et al.  Solving Weighted Argumentation Frameworks with Soft Constraints , 2010, CILC.

[2]  L V Rubinstein,et al.  Randomized trial of lobectomy versus limited resection for T1 N0 non-small cell lung cancer. Lung Cancer Study Group. , 1995, The Annals of thoracic surgery.

[3]  Sanjay Modgil,et al.  Reasoning about preferences in argumentation frameworks , 2009, Artif. Intell..

[4]  Leila Amgoud,et al.  Argumentation Frameworks as Constraint Satisfaction Problems , 2011, SUM.

[5]  Sarvapali D. Ramchurn,et al.  An Anytime Algorithm for Optimal Coalition Structure Generation , 2014, J. Artif. Intell. Res..

[6]  Stefano Bistarelli,et al.  ConArg: A Constraint-Based Computational Framework for Argumentation Systems , 2011, 2011 IEEE 23rd International Conference on Tools with Artificial Intelligence.

[7]  Lucas Bordeaux,et al.  Propositional Satisfiability and Constraint Programming: A comparative survey , 2006, CSUR.

[8]  Ulises Cortés,et al.  Possibilistic-Based Argumentation: An Answer Set Programming Approach , 2008, 2008 Mexican International Conference on Computer Science.

[9]  Gilad Ravid,et al.  Asynchronous discussion groups as Small World and Scale Free Networks , 2004, First Monday.

[10]  Stefano Bistarelli,et al.  Finding partitions of arguments with Dung's properties via SCSPs , 2011, CILC.

[11]  Pierre Marquis,et al.  Constrained Argumentation Frameworks , 2006, KR.

[12]  Krzysztof R. Apt,et al.  Logic Programming , 1990, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[13]  Philippe Besnard,et al.  Checking the acceptability of a set of arguments , 2004, NMR.

[14]  Jeff Z. Pan,et al.  An Argument-Based Approach to Using Multiple Ontologies , 2009, SUM.

[15]  Trevor J. M. Bench-Capon Persuasion in Practical Argument Using Value-based Argumentation Frameworks , 2003, J. Log. Comput..

[16]  Stefan Woltran,et al.  ASPARTIX: Implementing Argumentation Frameworks Using Answer-Set Programming , 2008, ICLP.

[17]  Stefano Bistarelli,et al.  A Common Computational Framework for Semiring-based Argumentation Systems , 2010, ECAI.

[18]  Claudette Cayrol,et al.  Inferring from Inconsistency in Preference-Based Argumentation Frameworks , 2002, Journal of Automated Reasoning.

[19]  Matthew L. Ginsberg,et al.  Limited Discrepancy Search , 1995, IJCAI.

[20]  Michael Wooldridge,et al.  Inconsistency tolerance in weighted argument systems , 2009, AAMAS.

[21]  Nikos I. Karacapilidis,et al.  The Zeno argumentation framework , 1997, ICAIL '97.

[22]  Roberto Rossi,et al.  Cost-Based Filtering for Stochastic Inventory Control , 2006, CSCLP.

[23]  Paul E. Dunne,et al.  Semi-stable semantics , 2006, J. Log. Comput..

[24]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[25]  Toby Walsh,et al.  Handbook of Constraint Programming (Foundations of Artificial Intelligence) , 2006 .

[26]  Phan Minh Dung,et al.  On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games , 1995, Artif. Intell..