Pattern classification by stochastic neural network with missing data

In this paper, pattern classification by stochastic neural networks is considered. This model is also called a Gaussian mixture model. When missing data exist in the training data, it is usual to remove incomplete instants. Here we take another approach, where the missing elements are estimated by using the conditional expectation based on the estimated model by using the EM algorithm. It is shown by using Fisher's Iris data that this approach is superior to removing incomplete data.