Water signal attenuation in diffusion-weighted 1H NMR experiments during cerebral ischemia: influence of intracellular restrictions, extracellular tortuosity, and exchange.

[1]  Josef Pfeuffer,et al.  Monitoring of cell volume and water exchange time in perfused cells by diffusion‐weighted 1H NMR spectroscopy , 1998, NMR in biomedicine.

[2]  Josef Pfeuffer,et al.  Restricted diffusion and exchange of intracellular water: theoretical modelling and diffusion time dependence of 1H NMR measurements on perfused glial cells , 1998, NMR in biomedicine.

[3]  D Artemov,et al.  Intracellular volume and apparent diffusion constants of perfused cancer cell cultures, as measured by NMR , 1997, Magnetic resonance in medicine.

[4]  I. Vorisek,et al.  Ischemia-Induced Changes in the Extracellular Space Diffusion Parameters, K+, and pH in the Developing Rat Cortex and Corpus Callosum , 1997, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[5]  A. Szafer,et al.  An analytical model of restricted diffusion in bovine optic nerve , 1997, Magnetic resonance in medicine.

[6]  P. Agre,et al.  Specialized Membrane Domains for Water Transport in Glial Cells: High-Resolution Immunogold Cytochemistry of Aquaporin-4 in Rat Brain , 1997, The Journal of Neuroscience.

[7]  D. Norris,et al.  Biexponential diffusion attenuation in various states of brain tissue: Implications for diffusion‐weighted imaging , 1996, Magnetic resonance in medicine.

[8]  P. Basser,et al.  Toward a quantitative assessment of diffusion anisotropy , 1996, Magnetic resonance in medicine.

[9]  L. Vargova,et al.  Dynamic changes in water ADC, energy metabolism, extracellular space volume, and tortuosity in neonatal rat brain during global ischemia , 1996, Magnetic resonance in medicine.

[10]  Diffusion of water in rat sciatic nerve measured by 1H pulsed field gradient NMR: compartmentation and anisotropy. , 1996, The Japanese journal of physiology.

[11]  A. Anderson,et al.  Effects of osmotically driven cell volume changes on diffusion‐weighted imaging of the rat optic nerve , 1996, Magnetic resonance in medicine.

[12]  P. Agre,et al.  Pathophysiology of the aquaporin water channels. , 1996, Annual review of physiology.

[13]  P. Agre,et al.  Aquaporin water channels: unanswered questions and unresolved controversies , 1995, Current Opinion in Cell Biology.

[14]  Katsuhiro Yamashita,et al.  Changes of relaxation times (T1, T2) and apparent diffusion coefficient after permanent middle cerebral artery occlusion in the rat: temporal evolution, regional extent, and comparison with histology , 1995, Magnetic resonance in medicine.

[15]  D. Bihan,et al.  Molecular diffusion, tissue microdynamics and microstructure , 1995 .

[16]  K G Helmer,et al.  The application of porous‐media theory to the investigation of time‐dependent diffusion in in vivo systems , 1995, NMR in biomedicine.

[17]  J C Gore,et al.  Diffusion‐weighted imaging in tissues: Theoretical models , 1995, NMR in biomedicine.

[18]  Kim Butts,et al.  Clinical Aspects of DWI , 1995, NMR in biomedicine.

[19]  P. Basser Inferring microstructural features and the physiological state of tissues from diffusion‐weighted images , 1995, NMR in biomedicine.

[20]  P W Kuchel,et al.  Effects of cholesterol on transmembrane water diffusion in human erythrocytes measured using pulsed field gradient NMR. , 1995, Biophysical chemistry.

[21]  J. Gore,et al.  Theoretical Model for Water Diffusion in Tissues , 1995, Magnetic resonance in medicine.

[22]  J. Baraban,et al.  Molecular characterization of an aquaporin cDNA from brain: candidate osmoreceptor and regulator of water balance. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[23]  P. Deen,et al.  Aquaporins: water selective channels in biological membranes. Molecular structure and tissue distribution. , 1994, Biochimica et biophysica acta.

[24]  D. Norris,et al.  Healthy and infarcted brain tissues studied at short diffusion times: The origins of apparent restriction and the reduction in apparent diffusion coefficient , 1994, NMR in biomedicine.

[25]  M. Bronskill,et al.  Anisotropy of NMR properties of tissues , 1994, Magnetic resonance in medicine.

[26]  G. Benga Water channels in membranes , 1994, Cell biology international.

[27]  M. Knepper The aquaporin family of molecular water channels. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[28]  C. Beaulieu,et al.  Determinants of anisotropic water diffusion in nerves , 1994, Magnetic resonance in medicine.

[29]  K. Svoboda,et al.  Time-dependent diffusion of water in a biological model system. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[30]  D. G. Norris,et al.  Coherence and Interference in Ultrafast RARE Experiments , 1993 .

[31]  P. Agre,et al.  Aquaporin CHIP: the archetypal molecular water channel. , 1993, The American journal of physiology.

[32]  A. Lehmenkühler,et al.  Extracellular space parameters in the rat neocortex and subcortical white matter during postnatal development determined by diffusion analysis , 1993, Neuroscience.

[33]  D. Norris,et al.  On the application of ultra‐fast rare experiments , 1992, Magnetic resonance in medicine.

[34]  L. Hedlund,et al.  Mechanism of Detection of Acute Cerebral Ischemia in Rats by Diffusion‐Weighted Magnetic Resonance Microscopy , 1992, Stroke.

[35]  P. Callaghan Principles of Nuclear Magnetic Resonance Microscopy , 1991 .

[36]  G Benga,et al.  On measuring the diffusional water permeability of human red blood cells and ghosts by nuclear magnetic resonance. , 1990, Journal of biochemical and biophysical methods.

[37]  H G Lipinski Monte Carlo simulation of extracellular diffusion in brain tissues. , 1990, Physics in medicine and biology.

[38]  Jörg Kärger,et al.  Principles and Application of Self-Diffusion Measurements by Nuclear Magnetic Resonance , 1988 .

[39]  C. Nicholson,et al.  Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum. , 1981, The Journal of physiology.

[40]  E. V. Meerwall,et al.  Interpreting pulsed‐gradient spin–echo diffusion experiments with permeable membranes , 1981 .

[41]  J. E. Tanner Transient diffusion in a system partitioned by permeable barriers. Application to NMR measurements with a pulsed field gradient , 1978 .

[42]  C F Hazlewood,et al.  Nuclear magnetic resonance measurement of skeletal muscle: anisotrophy of the diffusion coefficient of the intracellular water. , 1976, Biophysical journal.

[43]  J Andrasko,et al.  Water diffusion permeability of human erythrocytes studied by a pulsed gradient NMR technique. , 1976, Biochimica et biophysica acta.

[44]  J. Kärger Zur Bestimmung der Diffusion in einem Zweibereichsystem mit Hilfe von gepulsten Feldgradienten , 1969 .

[45]  J. E. Tanner,et al.  Restricted Self‐Diffusion of Protons in Colloidal Systems by the Pulsed‐Gradient, Spin‐Echo Method , 1968 .

[46]  J. E. Tanner,et al.  Spin diffusion measurements : spin echoes in the presence of a time-dependent field gradient , 1965 .

[47]  G. E. Archie The electrical resistivity log as an aid in determining some reservoir characteristics , 1942 .