Single-Phase Ternary Compounds with a Disordered Lattice and Liquid Metal Phase for High-Performance Li-Ion Battery Anodes

[1]  Q. Zhang,et al.  Bifunctional Liquid Metals Allow Electrical Insulating Phase Change Materials to Dual-Mode Thermal Manage the Li-Ion Batteries , 2022, Nano-Micro Letters.

[2]  Xiaobo Ji,et al.  Natural Stibnite for Lithium-/Sodium-Ion Batteries: Carbon Dots Evoked High Initial Coulombic Efficiency , 2022, Nano-Micro Letters.

[3]  K. Kilian,et al.  Gallium Nanodroplets are Anti-Inflammatory without Interfering with Iron Homeostasis. , 2022, ACS nano.

[4]  M. Zhang,et al.  Boosting Li-Ion Diffusion Kinetics of Na2Ti6-xMoxO13 via Coherent Dimensional Engineering and Lattice Tailoring: An Alternative High-Rate Anode. , 2022, ACS nano.

[5]  Zhaolin Liu,et al.  High-Energy Batteries: Beyond Lithium-Ion and Their Long Road to Commercialisation , 2022, Nano-Micro Letters.

[6]  G. Cui,et al.  An Endotenon Sheath-Inspired Double-Network Binder Enables Superior Cycling Performance of Silicon Electrodes , 2022, Nano-Micro Letters.

[7]  Zhanxu Yang,et al.  Bi Works as a Li Reservoir for Promoting the Fast‐Charging Performance of Phosphorus Anode for Li‐Ion Batteries , 2022, Advanced Energy Materials.

[8]  H. Fei,et al.  A Silicon Monoxide Lithium-Ion Battery Anode with Ultrahigh Areal Capacity , 2022, Nano-Micro Letters.

[9]  Michael J. Christoe,et al.  Polydopamine Shell as a Ga3+ Reservoir for Triggering Gallium-Indium Phase Separation in Eutectic Gallium-Indium Nanoalloys. , 2021, ACS nano.

[10]  H. Du,et al.  MOF-Derived ZnS Nanodots/Ti3C2Tx MXene Hybrids Boosting Superior Lithium Storage Performance , 2021, Nano-micro letters.

[11]  H. Alshareef,et al.  Accordion‐Like Carbon with High Nitrogen Doping for Fast and Stable K Ion Storage , 2021, Advanced Energy Materials.

[12]  C. Zhi,et al.  Electrolyte/Structure-Dependent Cocktail Mediation Enabling High-Rate/Low-Plateau Metal Sulfide Anodes for Sodium Storage , 2021, Nano-Micro Letters.

[13]  Qingguo Bai,et al.  Self-healing liquid Ga-based anodes with regulated wetting and working temperatures for advanced Mg ion batteries , 2021, Journal of Materials Chemistry A.

[14]  Min Zhu,et al.  Hydrogen Production via Hydrolysis and Alcoholysis of Light Metal-Based Materials: A Review , 2021, Nano-micro letters.

[15]  Yi-Rong Pei,et al.  Wire-in-Wire TiO2/C Nanofibers Free-Standing Anodes for Li-Ion and K-Ion Batteries with Long Cycling Stability and High Capacity , 2021, Nano-Micro Letters.

[16]  Zaiping Guo,et al.  Synchrotron X‐Ray Absorption Spectroscopy and Electrochemical Study of Bi2O2Se Electrode for Lithium‐/Potassium‐Ion Storage , 2021, Advanced Energy Materials.

[17]  T. He,et al.  CoPSe: A New Ternary Anode Material for Stable and High‐Rate Sodium/Potassium‐Ion Batteries , 2021, Advanced materials.

[18]  Zhongyuan Liu,et al.  Mechanical Robustness Two-Dimensional Silicon Phosphide Flake Anodes for Lithium Ion Batteries , 2020 .

[19]  G. Ceder,et al.  Cation-disordered rocksalt-type high-entropy cathodes for Li-ion batteries , 2020, Nature Materials.

[20]  Wangda Li,et al.  Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage , 2020, Science.

[21]  Tongchao Liu,et al.  A disordered rock salt anode for fast-charging lithium-ion batteries , 2020, Nature.

[22]  Bingan Lu,et al.  Carbon Dots@rGO Paper as Freestanding and Flexible Potassium‐Ion Batteries Anode , 2020, Advanced science.

[23]  S. Dou,et al.  Electrocatalysing S Cathodes via Multisulfiphilic Sites for Superior Room-Temperature Sodium-Sulfur Batteries. , 2020, ACS nano.

[24]  G. Ceder,et al.  High-Capacity Mn-Based Cation-Disordered Rocksalt Cathodes , 2020, ECS Meeting Abstracts.

[25]  T. Zhai,et al.  Level the conversion/alloying voltage gap by grafting the endogenetic Sb2Te3 building block into layered GeTe to build Ge2Sb2Te5 for Li-ion batteries. , 2019, ACS applied materials & interfaces.

[26]  Zhonghua Zhang,et al.  A self-healing CuGa2 anode for high-performance Li ion batteries , 2019, Journal of Power Sources.

[27]  R. Hu,et al.  Robust spindle-structured FeP@C for high-performance alkali-ion batteries anode , 2019, Electrochimica Acta.

[28]  Meilin Liu,et al.  An amorphous Zn–P/graphite composite with chemical bonding for ultra-reversible lithium storage , 2019, Journal of Materials Chemistry A.

[29]  Meilin Liu,et al.  A new family of cation-disordered Zn(Cu)–Si–P compounds as high-performance anodes for next-generation Li-ion batteries , 2019, Energy & Environmental Science.

[30]  J. Leng,et al.  Crystalline SnO2 @ amorphous TiO2 core-shell nanostructures for high-performance lithium ion batteries , 2019, Electrochimica Acta.

[31]  Jaephil Cho,et al.  A Tannic Acid–Derived N‐, P‐Codoped Carbon‐Supported Iron‐Based Nanocomposite as an Advanced Trifunctional Electrocatalyst for the Overall Water Splitting Cells and Zinc–Air Batteries , 2018, Advanced Energy Materials.

[32]  Hui Xie,et al.  Shape-Transformable, Fusible Rodlike Swimming Liquid Metal Nanomachine. , 2018, ACS nano.

[33]  Hsing-Yu Tuan,et al.  Multi-walled carbon nanotube-wrapped SiP2 as a superior anode material for lithium-ion and sodium-ion batteries , 2018, Journal of Power Sources.

[34]  R. Hu,et al.  FeP@C Nanotube Arrays Grown on Carbon Fabric as a Low Potential and Freestanding Anode for High-Performance Li-Ion Batteries. , 2018, Small.

[35]  Zeyi Wu,et al.  Rapid Amorphization in Metastable CoSeO3·H2O Nanosheets for Ultrafast Lithiation Kinetics. , 2018, ACS nano.

[36]  Junhong Chen,et al.  A room-temperature liquid metal-based self-healing anode for lithium-ion batteries with an ultra-long cycle life , 2017 .

[37]  Hansu Kim,et al.  Microstructural Tuning of Si/TiFeSi2 Nanocomposite as Lithium Storage Materials by Mechanical Deformation , 2016 .

[38]  Yitai Qian,et al.  A Deep Reduction and Partial Oxidation Strategy for Fabrication of Mesoporous Si Anode for Lithium Ion Batteries. , 2016, ACS nano.

[39]  Haoshen Zhou,et al.  Layered phosphorus-like GeP5: a promising anode candidate with high initial coulombic efficiency and large capacity for lithium ion batteries , 2015 .

[40]  Jun Liu,et al.  Uniform yolk–shell Sn4P3@C nanospheres as high-capacity and cycle-stable anode materials for sodium-ion batteries , 2015 .

[41]  Gerbrand Ceder,et al.  A new class of high capacity cation-disordered oxides for rechargeable lithium batteries: Li–Ni–Ti–Mo oxides , 2015 .

[42]  Rebecca K. Kramer,et al.  Mechanically Sintered Gallium–Indium Nanoparticles , 2015, Advanced materials.

[43]  Weidong Zhou,et al.  Toward High Cycle Efficiency of Silicon‐Based Negative Electrodes by Designing the Solid Electrolyte Interphase , 2015 .

[44]  A. Hu,et al.  Si-Based Anode Materials for Li-Ion Batteries: A Mini Review , 2014, Nano-micro letters.

[45]  Guangyuan Zheng,et al.  Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. , 2014, Nano letters.

[46]  Gerbrand Ceder,et al.  Unlocking the Potential of Cation-Disordered Oxides for Rechargeable Lithium Batteries , 2014, Science.

[47]  Wenquan Lu,et al.  Silicon‐Based Nanomaterials for Lithium‐Ion Batteries: A Review , 2014 .

[48]  Hui Wu,et al.  Designing nanostructured Si anodes for high energy lithium ion batteries , 2012 .

[49]  Mark W. Verbrugge,et al.  Liquid Metal Alloys as Self-Healing Negative Electrodes for Lithium Ion Batteries , 2011 .

[50]  V Srinivasan,et al.  Real-time measurement of stress and damage evolution during initial lithiation of crystalline silicon. , 2011, Physical review letters.

[51]  Chunsheng Wang,et al.  Galvanostatic Intermittent Titration Technique for Phase-Transformation Electrodes , 2010 .

[52]  Jing Xu,et al.  Determination of the diffusion coefficient of lithium ions in nano-Si , 2009 .

[53]  P. Heitjans,et al.  Ion transport and diffusion in nanocrystalline and glassy ceramics , 2008 .

[54]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[55]  H. Sohn,et al.  Black Phosphorus and its Composite for Lithium Rechargeable Batteries , 2007 .

[56]  Yi Wang,et al.  First-principles study of ternary fcc solution phases from special quasirandom structures , 2007, 0709.2302.

[57]  Mark N. Obrovac,et al.  Reversible Cycling of Crystalline Silicon Powder , 2007 .

[58]  Axel van de Walle,et al.  Thermodynamic properties of binary hcp solution phases from special quasirandom structures , 2006, 0708.3995.

[59]  Ado Jorio,et al.  General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy , 2006 .

[60]  J. Tarascon,et al.  Exploring the Li–Ga room temperature phase diagram and the electrochemical performances of the LixGay alloys vs. Li , 2005 .

[61]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[62]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[63]  R. Pandey,et al.  Ab initio electronic structure of superionic conductor Li3P , 1992 .

[64]  F. Tuinstra,et al.  Raman Spectrum of Graphite , 1970 .