DNA als Werkstoff für die Nanotechnologie

[1]  J. Barton,et al.  ELECTRON TRANSFER BETWEEN METALLOINTERCALATORS BOUND TO DNA : SPECTRAL IDENTIFICATION OF THE TRANSIENT INTERMEDIATE , 1995 .

[2]  N C Seeman,et al.  Assembly and characterization of five-arm and six-arm DNA branched junctions. , 1991, Biochemistry.

[3]  Peter E. Nielsen,et al.  Peptide Nucleic Acid Probes for Sequence-Specific DNA Biosensors , 1996 .

[4]  N. Seeman,et al.  Synthesis from DNA of a molecule with the connectivity of a cube , 1991, Nature.

[5]  Peter W. Stephens,et al.  Nanocrystal gold molecules , 1996 .

[6]  P. Hagerman Flexibility of DNA. , 1988, Annual review of biophysics and biophysical chemistry.

[7]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[8]  P. Dervan,et al.  Recognition of 5'-(A,T)GG(A,T)2-3' Sequences in the Minor Groove of DNA by Hairpin Polyamides , 1996 .

[9]  Nadrian C. Seeman,et al.  A specific quadrilateral synthesized from DNA branched junctions , 1989 .

[10]  K. Nicolaou,et al.  DNA-Kohlenhydrat-Erkennung: Design und Synthese eines an eine DNA-Sequenz aus acht Basen selektiv bindenden Oligosaccharids† , 1995 .

[11]  David J. Schiffrin,et al.  Nanotechnology and nucleotides , 1996, Nature.

[12]  N C Seeman,et al.  Three-arm nucleic acid junctions are flexible. , 1986, Nucleic acids research.

[13]  Horst Weller,et al.  Selbstorganisierte Überstrukturen aus Nanoteilchen , 1996 .

[14]  P. Schultz,et al.  Herstellung und Isolierung eines Homodimers aus CdSe-Nanokristallen† , 1997 .

[15]  Cherie R. Kagan,et al.  Self-Organization of CdSe Nanocrystallites into Three-Dimensional Quantum Dot Superlattices , 1995, Science.

[16]  B H Robinson,et al.  The design of a biochip: a self-assembling molecular-scale memory device. , 1987, Protein engineering.

[17]  R. Ebright,et al.  Artificial Sequence-Specific DNA Binding Peptides: Branched-Chain Basic Regions , 1996 .

[18]  S. Sigurdsson,et al.  DNA interstrand cross-linking reactions of pyrrole-derived, bifunctional electrophiles: evidence for a common target site in DNA , 1993 .

[19]  H. Hansma,et al.  Biomolecular imaging with the atomic force microscope. , 1994, Annual review of biophysics and biomolecular structure.

[20]  R. Murray,et al.  Monolayers in Three Dimensions: Synthesis and Electrochemistry of ω-Functionalized Alkanethiolate-Stabilized Gold Cluster Compounds , 1996 .

[21]  P. Nielsen,et al.  DNA analogues with nonphosphodiester backbones. , 1995, Annual review of biophysics and biomolecular structure.

[22]  P. Schultz,et al.  Organization of 'nanocrystal molecules' using DNA , 1996, Nature.

[23]  N. Seeman Nucleic acid junctions and lattices. , 1982, Journal of theoretical biology.

[24]  L M Adleman,et al.  Molecular computation of solutions to combinatorial problems. , 1994, Science.

[25]  Nadrian C. Seeman,et al.  A solid-support methodology for the construction of geometrical objects from DNA , 1992 .

[26]  N. Seeman,et al.  Construction of a DNA-Truncated Octahedron , 1994 .

[27]  J. Storhoff,et al.  A DNA-based method for rationally assembling nanoparticles into macroscopic materials , 1996, Nature.

[28]  N. Seeman,et al.  Antiparallel DNA Double Crossover Molecules As Components for Nanoconstruction , 1996 .

[29]  Wen-Ling Shaiu,et al.  Atomic force microscopy of oriented linear DNA molecules labeled with 5nm gold spheres , 1993, Nucleic Acids Res..

[30]  Douglas Philp,et al.  Self‐Assembly in Natural and Unnatural Systems , 1996 .

[31]  DNA technology in chip construction , 1993 .

[32]  Drexler Ke,et al.  Molecular engineering: An approach to the development of general capabilities for molecular manipulation. , 1981 .

[33]  Douglas Philp,et al.  SELBSTORGANISATION IN NATURLICHEN UND IN NICHTNATURLICHEN SYSTEMEN , 1996 .

[34]  M. Egli Die Strukturen von Nucleinsäureanaloga und Antisense‐Oligonucleotiden , 1996 .

[35]  S. Stupp,et al.  Semiconducting superlattices templated by molecular assemblies , 1996, Nature.

[36]  M. Egli Structural Aspects of Nucleic Acid Analogs and Antisense Oligonucleotides , 1996 .

[37]  K. Nicolaou,et al.  DNA–Carbohydrate Recognition: Design and Synthesis of an Eight‐Base Sequence‐Selective DNA‐Binding Oligosaccharide , 1995 .

[38]  Thomas J. Meade,et al.  Elektronenübertragung in DNA: Ruthenium‐Elektronendonor‐ und ‐acceptorkomplexe als ortsspezifische Modifikationen doppelsträngiger DNA , 1995 .

[39]  Louis A. Cuccia,et al.  Self‐Assembled Monolayers on Gold Nanoparticles , 1996 .

[40]  J. Trauger,et al.  Recognition of DNA by designed ligands at subnanomolar concentrations , 1996, Nature.

[41]  C R Cantor,et al.  Oligonucleotide-directed self-assembly of proteins: semisynthetic DNA--streptavidin hybrid molecules as connectors for the generation of macroscopic arrays and the construction of supramolecular bioconjugates. , 1994, Nucleic acids research.

[42]  M. Brust,et al.  Novel gold‐dithiol nano‐networks with non‐metallic electronic properties , 1995 .

[43]  H. Weller SELF-ORGANIZED SUPERLATTICES OF NANOPARTICLES , 1996 .

[44]  N. Seeman,et al.  Ligation of triangles built from bulged 3-arm DNA branched junctions , 1996 .

[45]  B. Schulz,et al.  A "Double-Diamond Superlattice" Built Up of Cd17S4(SCH2CH2OH)26 Clusters , 1995, Science.

[46]  N. Seeman,et al.  The ligation and flexibility of four‐arm DNA junctions , 1988, Biopolymers.