Kinetic study of Fischer–Tropsch process on titania-supported cobalt–manganese catalyst

Abstract An active cobalt–manganese catalyst was prepared by co-precipitation method, and was also tested for hydrogenation of carbon monoxide to light olefins. The catalyst was characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and Brunauer–Emmett–Teller (BET) surface area techniques. The kinetic experiments on a well-characterized Co–Mn/TiO2 catalyst were performed in a fixed-bed micro-reactor, and were also conducted in a temperature range of 190–280 °C, pressure range of 1–10 bar, H2/CO feed ratio (mol/mol) range of 1–3 and a space velocity range of 2700–5200 h−1. Two kinetic expressions based on Langmuir–Hinshelwood–Houngen–Watson (LHHW) mechanism were observed to fit the experimental data accurately for Fischer–Tropsch synthesis reaction. The kinetic parameters were estimated with non-linear regression method. Activation energies obtained were 35.131 and 44.613 kJ/mol for optimal kinetics models.

[1]  G. Ertl,et al.  Adsorption of CO on a Ni(111) surface , 1974 .

[2]  A. Kiennemann,et al.  Role of the Alloy and Spinel in the Catalytic Behavior of Fe−Co/Cobalt Magnetite Composites under CO and CO2 Hydrogenation , 2002 .

[3]  J. Barrault,et al.  Effects of manganese oxide and sulphate on olefin selectivity of iron supported catalysts in the Fischer-Tropsch reaction , 1983 .

[4]  G. V. D. Laan,et al.  Kinetics and Selectivity of the Fischer–Tropsch Synthesis: A Literature Review , 1999 .

[5]  B. Wojciechowski,et al.  Studies of the fischer‐tropsch synthesis on a colbalt catalyst. III. mechanistic formulation of the kinetics of selectivity for higher hydrocarbon formation , 1989 .

[6]  R. Zennaro,et al.  Kinetics of Fischer–Tropsch synthesis on titania-supported cobalt , 2000 .

[7]  N. Coville,et al.  Fe:CoTiO2 bimetallic catalysts for the Fischer-Tropsch reaction I. Characterization and reactor studies , 1997 .

[8]  Wen-Ping Ma,et al.  Kinetics modelling of Fischer–Tropsch synthesis over an industrial Fe–Cu–K catalyst☆ , 2003 .

[9]  G. Marin,et al.  Characterization of a promoted precipitated iron catalyst for Fischer-Tropsch synthesis , 1988 .

[10]  J. Barrault,et al.  Hydrocondensation of CO2 (CO) over supported iron catalysts , 1981 .

[11]  Y. Rhee,et al.  Effect of Cu content on the bifunctional Fischer–Tropsch Fe–Cu–K/ZSM5 catalyst , 2009 .

[12]  G. Wedler,et al.  Characterization of Alumina, Silica, and Titania Supported Cobalt Catalysts , 2002 .

[13]  Bohdan W. Wojciechowski,et al.  The Kinetics of the Fischer-Tropsch Synthesis , 1988 .

[14]  A. Irankhah,et al.  Fischer-Tropsch Reaction Kinetics of Cobalt Catalyst in Supercritical Phase , 2007 .

[15]  M. Kacimi,et al.  Titania-Supported Cobalt and Cobalt–Phosphorus Catalysts: Characterization and Performances in Ethane Oxidative Dehydrogenation , 2001 .

[16]  H. Seo,et al.  Partial Oxidation of Methane to Syngas Over Rh and Ni Catalysts Impregnated on CeO2, SiO2, and Al2O3 , 2005 .

[17]  G. Schrader,et al.  Characterization of a fused iron catalyst for Fischer-Tropsch synthesis by in situ laser Raman spectroscopy , 1985 .

[18]  B. Weckhuysen,et al.  In Situ X-ray Absorption of Co/Mn/TiO2 Catalysts for Fischer−Tropsch Synthesis , 2004 .

[19]  Suthida Authayanun,et al.  Modeling of an industrial fixed bed reactor based on lumped kinetic models for hydrogenation of pyrolysis gasoline , 2008 .

[20]  M. Dry High quality diesel via the Fischer–Tropsch process – a review , 2002 .

[21]  R. Zennaro,et al.  Development of a complete kinetic model for the Fischer-Tropsch synthesis over Co/Al2O3 catalysts , 2007 .

[22]  Si‐qing Cheng,et al.  Ligandless palladium supported on SiO2–TiO2 as effective catalyst for Suzuki reaction , 2010 .

[23]  Young Ho Kim,et al.  Direct conversion of synthesis gas to light olefins using dual bed reactor , 2009 .

[24]  Hans Schulz,et al.  Polymerisation kinetics of the Fischer-Tropsch CO hydrogenation using iron and cobalt based catalysts , 1999 .

[25]  Young Ho Kim,et al.  Effect of additives on redox behavior of iron oxide for chemical hydrogen storage , 2008 .

[26]  A. Outi,et al.  Kinetics and mechanism of the fischer tropsch hydrocarbon synthesis on a cobalt on alumina catalyst , 1981 .

[27]  Ying Liu,et al.  Detailed Kinetics of Fischer−Tropsch Synthesis on an Industrial Fe−Mn Catalyst , 2003 .

[28]  F. Botes,et al.  The Development of a Macro Kinetic Model for a Commercial Co/Pt/Al2O3 Fischer−Tropsch Catalyst , 2009 .

[29]  Tharapong Vitidsant,et al.  TiO2 promoted Co/SiO2 catalysts for Fischer–Tropsch synthesis , 2008 .

[30]  R. Keiski,et al.  Synthesis and activity measurement of the some bifunctional platinum loaded Beta zeolite catalysts for n-heptane hydroisomerization , 2008 .

[31]  V. Ponec,et al.  The Role of Chemisorption of Fischer-Tropsch Synthesis , 1979 .

[32]  S. Sahebdelfar,et al.  Intrinsic Kinetics Study of Dimethyl Ether Synthesis from Methanol on γ-Al2O3 Catalysts , 2008 .