Allow problems concerning spectral properties of sign pattern matrices: A survey
暂无分享,去创建一个
[1] On the Spectra of Striped Sign Patterns , 2003 .
[2] Judith J. McDonald,et al. Sign-patterns which require a positive eigenvalue , 1996 .
[3] Dmitriĭ Olegovich Logofet,et al. Matrices and Graphs Stability Problems in Mathematical Ecology , 1993 .
[4] Charles R. Johnson,et al. Sign patterns that require repeated eigenvalues , 1993 .
[5] C. Ballantine,et al. Stabilization by a diagonal matrix , 1970 .
[6] Inertias of zero–nonzero patterns , 2007 .
[7] Yubin Gao,et al. On the potential stability of star sign pattern matrices , 2001 .
[8] Two classes of symmetric sign patterns that require unique inertia , 2003 .
[9] P. Samuelson,et al. Foundations of Economic Analysis. , 1948 .
[10] Spectrally arbitrary ray patterns , 2008 .
[11] D. Olesky,et al. Spectrally arbitrary patterns , 2000 .
[12] Frank J. Hall,et al. Eigenvalue frequency and consistent sign pattern matrices , 1994 .
[13] Potentially nilpotent sign pattern matrices , 1999 .
[14] Charles R. Johnson. Combinatorial matrix analysis: An overview , 1988 .
[15] L. Elsner,et al. On the spectra of close-to-Schwarz matrices , 2003 .
[16] Qing Lin,et al. The Distance of Potentially Stable Sign Patterns to the Unstable Matrices , 2002, SIAM J. Matrix Anal. Appl..
[17] Yubin Gao,et al. Sign patterns allowing nilpotence of index 3 , 2007 .
[18] Charles R. Johnson,et al. Nested sequences of principal minors and potential stability , 1997 .
[19] T. Bone. Positive Feedback May Sometimes Promote Stability , 1983 .
[20] Victor Klee,et al. Qualitative stability of linear systems , 1987 .
[21] L. Hogben. Handbook of Linear Algebra , 2006 .
[22] Frank J. Hall,et al. Symmetric sign pattern matrices that require unique inertia , 2001 .
[23] James P. Quirk,et al. Qualitative Economics and the Stability of Equilibrium , 1965 .
[24] D. Olesky,et al. Inertially arbitrary sign patterns with no nilpotent realization , 2007 .
[25] Inertia sets of symmetric 2-generalized star sign patterns , 2006 .
[26] Satoru Iwata,et al. Computing the inertia from sign patterns , 2007, Math. Program..
[27] Yubin Gao,et al. Inertially arbitrary patterns , 2001 .
[28] Takeo Yamada,et al. Generic Matrix Sign-Stability , 1987, Canadian Mathematical Bulletin.
[29] Richard A. Brualdi,et al. Matrices of Sign-Solvable Linear Systems , 1995 .
[30] Frank,et al. INERTIA SETS OF SYMMETRIC SIGN PATTERN MATRICES , 2001 .
[31] Charles R. Johnson,et al. A combinatorial converse to the Perron-Frobenius theorem , 1990 .
[32] Victor Klee,et al. Linear algorithms for testing the sign stability of a matrix and for findingZ-maximum matchings in acyclic graphs , 1977 .
[33] Pauline van den Driessche,et al. Minimal Spectrally Arbitrary Sign Patterns , 2004, SIAM J. Matrix Anal. Appl..
[34] Sign structures of 3 × 3 stable matrices and their generalization to higher‐order matrices , 1988 .
[35] W. Greub. Linear Algebra , 1981 .
[36] Charles R. Johnson,et al. Some sign patterns that preclude matrix stability , 1988 .
[37] Charles R. Johnson,et al. The potentially stable tree sign patterns for dimensions less than five , 1989 .
[38] Victor Klee,et al. Sign-Patterns and Stability , 1989 .
[39] Sign pattern matrices that allow a nilpotent matrix , 1996, Bulletin of the Australian Mathematical Society.
[40] A. T. Fuller,et al. On the stabilization of matrices and the convergence of linear iterative processes , 1958, Mathematical Proceedings of the Cambridge Philosophical Society.
[41] C. Eschenbach. Sign patterns that require exactly one real eigenvalue and patterns that require n−1 nonreal eigenvalues , 1993 .
[42] James Quirk,et al. Qualitative Problems in Matrix Theory , 1969 .
[43] Chi-Kwong Li,et al. MAPS PRESERVING SPECTRAL RADIUS, NUMERICAL RADIUS, SPECTRAL NORM ∗ , 2007 .
[44] Charles R. Johnson,et al. Sign patterns that require real, nonreal or pure imaginary eigenvalues , 1991 .
[45] Richard A. Brualdi,et al. Combinatorial matrix theory , 1991 .
[46] Spectrally arbitrary patterns: Reducibility and the 2n conjecture for n = 5 , 2007 .
[47] P. D. Driessche,et al. Spectrally arbitrary star sign patterns , 2005 .
[48] Frank J. Hall,et al. Sign Pattern Matrices , 2006 .
[49] D. D. Olesky,et al. Low rank perturbations and the spectrum of a tridiagonal sign pattern , 2003 .