Stochastic calibration of local constitutive models through measurements at the macroscale in heterogeneous media

A methodology is presented suitable to identify properties of single phases, locally at the microscale, within a heterogeneous periodic material, on the basis of measurements at the macroscale and homogenization techniques. Reference is made to periodically perforated steel sheets, regarded as a prototype of a ductile composite material with periodic microstructure. The proposed method might be applied to industrial situations where the fabrication process of a composite material alters the mechanical properties of individual phases or constituents. Experimental data are obtained through monotonic uniaxial tensile tests at the macroscale. An elastic–plastic hardening model is attributed to the matrix material. Weighted least-squares, Monte Carlo simulations and sequential non-linear Kalman filters are employed to solve the parameter identification problem in a stochastic context, and comparative assessments of diverse strategies of inverse analysis are presented, as to accuracy and computational effectiveness.

[1]  W. Brekelmans,et al.  Overall behaviour of heterogeneous elastoviscoplastic materials: effect of microstructural modelling , 2000 .

[2]  A. Anthoine HOMOGENIZATION OF PERIODIC MASONRY: PLANE STRESS, GENERALIZED PLANE STRAIN OR 3D MODELLING? , 1997 .

[3]  D. Catlin Estimation, Control, and the Discrete Kalman Filter , 1988 .

[4]  Otto T. Bruhns,et al.  On the simultaneous estimation of model parameters used in constitutive laws for inelastic material behaviour , 1998 .

[5]  Giulio Maier,et al.  Strength of periodic elastic–brittle composites evaluated through homogenization and parameter identification☆ , 2002 .

[6]  A. Tarantola Inverse problem theory : methods for data fitting and model parameter estimation , 1987 .

[7]  Giulio Maier,et al.  Indirect identification of yield limits by mathematical programming , 1982 .

[8]  Henrik O. Madsen,et al.  Structural Reliability Methods , 1996 .

[9]  A. Anthoine Derivation of the in-plane elastic characteristics of masonry through homogenization theory , 1995 .

[10]  Katsuhiko Sasaki,et al.  Deformation Induced Anisotropy and Memorized Back Stress in Constitutive Model , 1998 .

[11]  J. Michel,et al.  Effective properties of composite materials with periodic microstructure : a computational approach , 1999 .

[12]  Douglas M. Bates,et al.  Nonlinear Regression Analysis and Its Applications , 1988 .

[13]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[14]  Huy Duong Bui,et al.  Inverse Problems in the Mechanics of Materials: An Introduction , 1994 .

[15]  V. Braibant,et al.  Kalman filtering: a new approach for building global approximations. Application to the inverse optimization of an explosively formed penetrator (EFP) , 1997 .

[16]  Giulio Maier,et al.  Material model calibration by indentation, imprint mapping and inverse analysis , 2004 .

[17]  Giulio Maier,et al.  Constitutive model calibration for railway wheel steel through tension-torsion tests , 2005 .

[18]  Tobias Harth,et al.  Identification of material parameters for inelastic constitutive models: statistical analysis and design of experiments , 2004 .

[19]  T. W. Anderson An Introduction to Multivariate Statistical Analysis , 1959 .

[20]  Albert Van Bael,et al.  Finite element modeling of plastic anisotropy induced by texture and strain-path change , 2003 .

[21]  A. Olsson,et al.  On Latin hypercube sampling for structural reliability analysis , 2003 .

[22]  Thomas F. Coleman,et al.  An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds , 1993, SIAM J. Optim..

[23]  Ali H. Sayed,et al.  Linear Estimation (Information and System Sciences Series) , 2000 .

[24]  Alberto Taliercio,et al.  Mechanical behaviour of brittle matrix composites: a homogenization approach , 1999 .

[25]  Fuh-Kuo Chen,et al.  Yield criterion for a perforated sheet with a uniform triangular pattern of round holes and a low ligament ratio , 2000 .

[26]  Fpt Frank Baaijens,et al.  HOMOGENIZATION OF THE ELASTOPLASTIC BEHAVIOR OF PERFORATED PLATES , 1998 .

[27]  Giulio Maier,et al.  Parameter identification in anisotropic elastoplasticity by indentation and imprint mapping , 2005 .

[28]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[29]  J. Chaboche,et al.  On the Plastic and Viscoplastic Constitutive Equations—Part II: Application of Internal Variable Concepts to the 316 Stainless Steel , 1983 .

[30]  Giulio Maier,et al.  Kinematic Limit Analysis of Periodic Heterogeneous Media , 2000 .

[31]  H. Unbehauen,et al.  The application of matrix differential calculus for the derivation of simplified expressions in approximate non-linear filtering algorithms , 2000, Autom..

[32]  Fusahito Yoshida,et al.  Inverse approach to identification of material parameters of cyclic elasto-plasticity for component layers of a bimetallic sheet , 2003 .

[33]  Giulio Maier Inverse problem in engineering plasticity: a quadratic programming approach , 1981 .

[34]  Manolis Papadrakakis,et al.  Structural reliability analyis of elastic-plastic structures using neural networks and Monte Carlo simulation , 1996 .

[35]  G. Maier,et al.  Parameter identification of a cohesive crack model by Kalman filter , 2002 .

[36]  Georgios E. Stavroulakis,et al.  Parameter identification of materials and structures , 2005 .

[37]  Sándor Kaliszky,et al.  Plasticity: Theory and Engineering Applications , 1989 .

[38]  Robert M. McMeeking,et al.  The influence of residual stress on the yielding of metal matrix composites , 1991 .

[39]  M. S. Bazaraa,et al.  Nonlinear Programming , 1979 .

[40]  A. Corigliano,et al.  Parameter identification in explicit structural dynamics: performance of the extended Kalman filter , 2004 .

[41]  Kazufumi Ito,et al.  Gaussian filters for nonlinear filtering problems , 2000, IEEE Trans. Autom. Control..

[42]  Niels Kjølstad Poulsen,et al.  New developments in state estimation for nonlinear systems , 2000, Autom..