Deep active subspaces -- a scalable method for high-dimensional uncertainty propagation

A problem of considerable importance within the field of uncertainty quantification (UQ) is the development of efficient methods for the construction of accurate surrogate models. Such efforts are particularly important to applications constrained by high-dimensional uncertain parameter spaces. The difficulty of accurate surrogate modeling in such systems, is further compounded by data scarcity brought about by the large cost of forward model evaluations. Traditional response surface techniques, such as Gaussian process regression (or Kriging) and polynomial chaos are difficult to scale to high dimensions. To make surrogate modeling tractable in expensive high-dimensional systems, one must resort to dimensionality reduction of the stochastic parameter space. A recent dimensionality reduction technique that has shown great promise is the method of `active subspaces'. The classical formulation of active subspaces, unfortunately, requires gradient information from the forward model - often impossible to obtain. In this work, we present a simple, scalable method for recovering active subspaces in high-dimensional stochastic systems, without gradient-information that relies on a reparameterization of the orthogonal active subspace projection matrix, and couple this formulation with deep neural networks. We demonstrate our approach on synthetic and real world datasets and show favorable predictive comparison to classical active subspaces.

[1]  Petter Helgesson,et al.  Efficient Use of Monte Carlo: Uncertainty Propagation , 2014 .

[2]  Paul G. Constantine,et al.  Global spatial sensitivity of runoff to subsurface permeability using the active subspace method , 2016 .

[3]  Antony Jameson,et al.  Aerodynamic Shape Optimization Using the Adjoint Method , 2003 .

[4]  Å. Björck Solving linear least squares problems by Gram-Schmidt orthogonalization , 1967 .

[5]  Ralph C. Smith,et al.  Uncertainty Quantification: Theory, Implementation, and Applications , 2013 .

[6]  E. Zio,et al.  A Combined Monte Carlo and Possibilistic Approach to Uncertainty Propagation in Event Tree Analysis , 2008, Risk analysis : an official publication of the Society for Risk Analysis.

[7]  Ilias Bilionis,et al.  Gaussian processes with built-in dimensionality reduction: Applications in high-dimensional uncertainty propagation , 2016, 1602.04550.

[8]  Qiqi Wang,et al.  Erratum: Active Subspace Methods in Theory and Practice: Applications to Kriging Surfaces , 2013, SIAM J. Sci. Comput..

[9]  Jorge Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[10]  Paul Bannister,et al.  Uncertainty quantification of squeal instability via surrogate modelling , 2015 .

[11]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[12]  Radford M. Neal Assessing Relevance determination methods using DELVE , 1998 .

[13]  Wotao Yin,et al.  A feasible method for optimization with orthogonality constraints , 2013, Math. Program..

[14]  P. Constantine,et al.  Active Subspaces of Airfoil Shape Parameterizations , 2017, 1702.02909.

[15]  Zoubin Ghahramani,et al.  Sparse Gaussian Processes using Pseudo-inputs , 2005, NIPS.

[16]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[17]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[18]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[19]  R. S. Thorne,et al.  Study of Monte Carlo approach to experimental uncertainty propagation with MSTW 2008 PDFs , 2012, 1205.4024.

[20]  T. Sullivan Introduction to Uncertainty Quantification , 2015 .

[21]  O. L. Maître,et al.  Uncertainty propagation in CFD using polynomial chaos decomposition , 2006 .

[22]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[23]  Gianluca Iaccarino,et al.  Many physical laws are ridge functions , 2016, 1605.07974.

[24]  Roger Woodard,et al.  Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.

[25]  Costas Papadimitriou,et al.  Bayesian uncertainty quantification and propagation in molecular dynamics simulations: a high performance computing framework. , 2012, The Journal of chemical physics.

[26]  Andrew Gelman,et al.  The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..

[27]  Jack J. Dongarra,et al.  Exascale computing and big data , 2015, Commun. ACM.

[28]  Sang-Hoon Lee,et al.  A comparative study of uncertainty propagation methods for black-box-type problems , 2008 .

[29]  Nikolaos V. Sahinidis,et al.  Uncertainty Quantification in CO2 Sequestration Using Surrogate Models from Polynomial Chaos Expansion , 2013 .

[30]  R. Ghanem,et al.  Uncertainty propagation using Wiener-Haar expansions , 2004 .

[31]  Michalis K. Titsias,et al.  Variational Learning of Inducing Variables in Sparse Gaussian Processes , 2009, AISTATS.

[32]  Luis Santos,et al.  Aerodynamic shape optimization using the adjoint method , 2007 .

[33]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[34]  Stefano Tarantola,et al.  Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models , 2004 .

[35]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[36]  Chong Wang,et al.  Stochastic variational inference , 2012, J. Mach. Learn. Res..

[37]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[38]  William S. Oates,et al.  Identifiability and Active Subspace Analysis for a Polydomain Ferroelectric Phase Field Model , 2017 .

[39]  Ilias Bilionis,et al.  Bayesian Uncertainty Propagation Using Gaussian Processes , 2015 .

[40]  Ilias Bilionis,et al.  Deep UQ: Learning deep neural network surrogate models for high dimensional uncertainty quantification , 2018, J. Comput. Phys..

[41]  Paul G. Constantine,et al.  Active subspaces for sensitivity analysis and dimension reduction of an integrated hydrologic model , 2015, Comput. Geosci..

[42]  R Bellman,et al.  DYNAMIC PROGRAMMING AND LAGRANGE MULTIPLIERS. , 1956, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Johan Larsson,et al.  Exploiting active subspaces to quantify uncertainty in the numerical simulation of the HyShot II scramjet , 2014, J. Comput. Phys..