Deep active subspaces -- a scalable method for high-dimensional uncertainty propagation
暂无分享,去创建一个
[1] Petter Helgesson,et al. Efficient Use of Monte Carlo: Uncertainty Propagation , 2014 .
[2] Paul G. Constantine,et al. Global spatial sensitivity of runoff to subsurface permeability using the active subspace method , 2016 .
[3] Antony Jameson,et al. Aerodynamic Shape Optimization Using the Adjoint Method , 2003 .
[4] Å. Björck. Solving linear least squares problems by Gram-Schmidt orthogonalization , 1967 .
[5] Ralph C. Smith,et al. Uncertainty Quantification: Theory, Implementation, and Applications , 2013 .
[6] E. Zio,et al. A Combined Monte Carlo and Possibilistic Approach to Uncertainty Propagation in Event Tree Analysis , 2008, Risk analysis : an official publication of the Society for Risk Analysis.
[7] Ilias Bilionis,et al. Gaussian processes with built-in dimensionality reduction: Applications in high-dimensional uncertainty propagation , 2016, 1602.04550.
[8] Qiqi Wang,et al. Erratum: Active Subspace Methods in Theory and Practice: Applications to Kriging Surfaces , 2013, SIAM J. Sci. Comput..
[9] Jorge Nocedal,et al. A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..
[10] Paul Bannister,et al. Uncertainty quantification of squeal instability via surrogate modelling , 2015 .
[11] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[12] Radford M. Neal. Assessing Relevance determination methods using DELVE , 1998 .
[13] Wotao Yin,et al. A feasible method for optimization with orthogonality constraints , 2013, Math. Program..
[14] P. Constantine,et al. Active Subspaces of Airfoil Shape Parameterizations , 2017, 1702.02909.
[15] Zoubin Ghahramani,et al. Sparse Gaussian Processes using Pseudo-inputs , 2005, NIPS.
[16] Hoon Kim,et al. Monte Carlo Statistical Methods , 2000, Technometrics.
[17] Guigang Zhang,et al. Deep Learning , 2016, Int. J. Semantic Comput..
[18] Jimmy Ba,et al. Adam: A Method for Stochastic Optimization , 2014, ICLR.
[19] R. S. Thorne,et al. Study of Monte Carlo approach to experimental uncertainty propagation with MSTW 2008 PDFs , 2012, 1205.4024.
[20] T. Sullivan. Introduction to Uncertainty Quantification , 2015 .
[21] O. L. Maître,et al. Uncertainty propagation in CFD using polynomial chaos decomposition , 2006 .
[22] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[23] Gianluca Iaccarino,et al. Many physical laws are ridge functions , 2016, 1605.07974.
[24] Roger Woodard,et al. Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.
[25] Costas Papadimitriou,et al. Bayesian uncertainty quantification and propagation in molecular dynamics simulations: a high performance computing framework. , 2012, The Journal of chemical physics.
[26] Andrew Gelman,et al. The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..
[27] Jack J. Dongarra,et al. Exascale computing and big data , 2015, Commun. ACM.
[28] Sang-Hoon Lee,et al. A comparative study of uncertainty propagation methods for black-box-type problems , 2008 .
[29] Nikolaos V. Sahinidis,et al. Uncertainty Quantification in CO2 Sequestration Using Surrogate Models from Polynomial Chaos Expansion , 2013 .
[30] R. Ghanem,et al. Uncertainty propagation using Wiener-Haar expansions , 2004 .
[31] Michalis K. Titsias,et al. Variational Learning of Inducing Variables in Sparse Gaussian Processes , 2009, AISTATS.
[32] Luis Santos,et al. Aerodynamic shape optimization using the adjoint method , 2007 .
[33] Heng Tao Shen,et al. Principal Component Analysis , 2009, Encyclopedia of Biometrics.
[34] Stefano Tarantola,et al. Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models , 2004 .
[35] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[36] Chong Wang,et al. Stochastic variational inference , 2012, J. Mach. Learn. Res..
[37] D. Xiu,et al. Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .
[38] William S. Oates,et al. Identifiability and Active Subspace Analysis for a Polydomain Ferroelectric Phase Field Model , 2017 .
[39] Ilias Bilionis,et al. Bayesian Uncertainty Propagation Using Gaussian Processes , 2015 .
[40] Ilias Bilionis,et al. Deep UQ: Learning deep neural network surrogate models for high dimensional uncertainty quantification , 2018, J. Comput. Phys..
[41] Paul G. Constantine,et al. Active subspaces for sensitivity analysis and dimension reduction of an integrated hydrologic model , 2015, Comput. Geosci..
[42] R Bellman,et al. DYNAMIC PROGRAMMING AND LAGRANGE MULTIPLIERS. , 1956, Proceedings of the National Academy of Sciences of the United States of America.
[43] Johan Larsson,et al. Exploiting active subspaces to quantify uncertainty in the numerical simulation of the HyShot II scramjet , 2014, J. Comput. Phys..