PII: S0042-6989(97)00213-7

The upper displacement limit for motion was compared with the upper disparity limit for stereopsis using two-frame random dot kinematograms or briefly presented stereograms, dmax (the disparity/ displacement at which subjects make 20 % errors in a forced-choice paradigm) was found to be very similar for motion and stereo at all dot densities, and to fall with increasing dot density (0.006% or two dots to 50 %) according to a power law (exponent -0 .2) . If dmax is limited by the spacing of false targets, this pattern of results suggests that the spatial primitives in the input to the correspondence process may be derived from multiple spatial scales. A model using MIRAGE centroids provides a good fit to the data. © 1998 Elsevier Science Ltd. All rights reserved.

[1]  D. Watt Visual Processing: Computational Psychophysical and Cognitive Research , 1990 .

[2]  O. Braddick A short-range process in apparent motion. , 1974, Vision research.

[3]  O. Braddick,et al.  Direction discrimination for band-pass filtered random dot kinematograms , 1990, Vision Research.

[4]  M. Fahle,et al.  Effects of pattern element density upon displacement limits for motion detection in random binary luminance patterns , 1992, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[5]  M. J. Morgan,et al.  Mostion discrimination in two-frame sequences with differing spatial frequency content , 1994, Vision Research.

[6]  H. Smallman,et al.  Size-disparity correlation in stereopsis at contrast threshold. , 1994, Journal of the Optical Society of America. A, Optics, image science, and vision.

[7]  K. N. Ogle Precision and validity of stereoscopic depth perception from double images. , 1953, Journal of the Optical Society of America.

[8]  V. Lollo,et al.  Effects of adapting luminance and stimulus contrast on the temporal and spatial limits of short-range motion , 1990, Vision Research.

[9]  David J. Fleet,et al.  Neural encoding of binocular disparity: Energy models, position shifts and phase shifts , 1996, Vision Research.

[10]  J P Frisby,et al.  PMF: A Stereo Correspondence Algorithm Using a Disparity Gradient Limit , 1985, Perception.

[11]  L. Cormack,et al.  Interocular correlation, luminance contrast and cyclopean processing , 1991, Vision Research.

[12]  G. Phillips,et al.  Cooperative phenomena in the perception of motion direction. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[13]  C. Baker,et al.  The basis of area and dot number effects in random dot motion perception , 1982, Vision Research.

[14]  Peter J. Bex,et al.  Energetic motion detection , 1995, Nature.

[15]  T. Poggio,et al.  Vertical image registration in stereopsis , 1984, Vision Research.

[16]  Brian J. Rogers,et al.  Effects of dot density, patch size and contrast on the upper spatial limit for direction discrimination in Random-dot Kinematograms , 1997, Vision Research.

[17]  R. Watt,et al.  A theory of the primitive spatial code in human vision , 1985, Vision Research.

[18]  M. Fahle,et al.  The Spatial Limit for Motion Detection in Noise Depends on Element Size, not on Spatial Frequency , 1997, Vision Research.

[19]  B. Julesz,et al.  Displacement limits for spatial frequency filtered random-dot cinematograms in apparent motion , 1983, Vision Research.

[20]  C. Blakemore The range and scope of binocular depth discrimination in man , 1970, The Journal of physiology.

[21]  Brian J. Rogers,et al.  Motion detection is limited by element density not spatial frequency , 1996, Vision Research.

[22]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[23]  G. Westheimer,et al.  Qualitative depth localization with diplopic images. , 1956, Journal of the Optical Society of America.

[24]  Walter F. Bischof,et al.  On the half-cycle displacement limit of sampled directional motion , 1991, Vision Research.

[25]  A. Parker,et al.  Efficiency of stereopsis in random-dot stereograms. , 1992, Journal of the Optical Society of America. A, Optics and image science.

[26]  D Marr,et al.  A computational theory of human stereo vision. , 1979, Proceedings of the Royal Society of London. Series B, Biological sciences.

[27]  M. J. Morgan,et al.  Spatial filtering precedes motion detection , 1992, Nature.

[28]  C. Schor,et al.  Disparity range for local stereopsis as a function of luminance spatial frequency , 1983, Vision Research.

[29]  O. Braddick,et al.  Masking of low frequency information in short-range apparent motion , 1990, Vision Research.

[30]  Robert Sekuler,et al.  Coherent global motion percepts from stochastic local motions , 1984, Vision Research.

[31]  B. Julesz,et al.  On the depth of the cyclopean retina , 1980, Experimental Brain Research.

[32]  Richard A Eagle,et al.  What determines the maximum displacement limit for spatially broadband kinematograms , 1996 .

[33]  W Richards,et al.  Local versus global stereopsis: two mechanisms? , 1974, Vision research.

[34]  J. Lappin,et al.  The detection of coherence in moving random-dot patterns , 1976, Vision Research.

[35]  J. J. Koenderink,et al.  Spatial properties of the visual detectability of moving spatial white noise , 2004, Experimental Brain Research.

[36]  R. Watt Scanning from coarse to fine spatial scales in the human visual system after the onset of a stimulus. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[37]  R. Hess,et al.  D max for stereopsis depends on size, not spatial frequency content , 1995, Vision Research.