Non-invasive prediction of IDH-wildtype genotype in gliomas using dynamic 18F-FET PET

[1]  Sebastian Bickelhaupt,et al.  Assessing the predictability of IDH mutation and MGMT methylation status in glioma patients using relaxation-compensated multipool CEST MRI at 7.0 T , 2018, Neuro-oncology.

[2]  G. Fink,et al.  Predicting IDH genotype in gliomas using FET PET radiomics , 2018, Scientific Reports.

[3]  W. Stummer,et al.  Diffuse Astrocytoma, IDH-Wildtype: A Dissolving Diagnosis , 2018, Journal of neuropathology and experimental neurology.

[4]  Gereon R Fink,et al.  Static and dynamic 18F–FET PET for the characterization of gliomas defined by IDH and 1p/19q status , 2018, European Journal of Nuclear Medicine and Molecular Imaging.

[5]  Armin Giese,et al.  Identification of time-to-peak on dynamic 18F-FET-PET as a prognostic marker specifically in IDH1/2 mutant diffuse astrocytoma , 2018, Neuro-oncology.

[6]  N. Albert,et al.  Towards standardization of 18F-FET PET imaging: do we need a consistent method of background activity assessment? , 2017, EJNMMI Research.

[7]  A. Bizzi,et al.  Prognostic value of molecular and imaging biomarkers in patients with supratentorial glioma , 2017, European Journal of Nuclear Medicine and Molecular Imaging.

[8]  M. Weller,et al.  Response Assessment in Neuro-Oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. , 2016, Neuro-oncology.

[9]  N. Albert,et al.  Serial 18F-FET PET Imaging of Primarily 18F-FET–Negative Glioma: Does It Make Sense? , 2016, The Journal of Nuclear Medicine.

[10]  G. Reifenberger,et al.  The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary , 2016, Acta Neuropathologica.

[11]  L. Deangelis,et al.  Integration of 2-hydroxyglutarate-proton magnetic resonance spectroscopy into clinical practice for disease monitoring in isocitrate dehydrogenase-mutant glioma. , 2016, Neuro-oncology.

[12]  Alexander R. Pico,et al.  Glioma Groups Based on 1p/19q, IDH, and TERT Promoter Mutations in Tumors. , 2015, The New England journal of medicine.

[13]  K. Aldape,et al.  IDH mutation status and role of WHO grade and mitotic index in overall survival in grade II–III diffuse gliomas , 2015, Acta Neuropathologica.

[14]  Maximilian Niyazi,et al.  Prognostic Significance of Dynamic 18F-FET PET in Newly Diagnosed Astrocytic High-Grade Glioma , 2015, The Journal of Nuclear Medicine.

[15]  G. Reifenberger,et al.  EANO guideline for the diagnosis and treatment of anaplastic gliomas and glioblastoma. , 2014, The Lancet. Oncology.

[16]  P. Bartenstein,et al.  Dynamic 18F-FET PET in Newly Diagnosed Astrocytic Low-Grade Glioma Identifies High-Risk Patients , 2014, The Journal of Nuclear Medicine.

[17]  J. Tonn,et al.  MRI-suspected low-grade glioma: is there a need to perform dynamic FET PET? , 2012, European Journal of Nuclear Medicine and Molecular Imaging.

[18]  R Grant,et al.  Guidelines on management of low‐grade gliomas: report of an EFNS–EANO * Task Force , 2010, European journal of neurology.

[19]  L. Liau,et al.  Cancer-associated IDH1 mutations produce 2-hydroxyglutarate , 2009, Nature.

[20]  B. Scheithauer,et al.  The 2007 WHO Classification of Tumours of the Central Nervous System , 2007, Acta Neuropathologica.

[21]  G. Reifenberger,et al.  Prognostic Value of O-(2-18F-Fluoroethyl)-l-Tyrosine PET and MRI in Low-Grade Glioma , 2007, Journal of Nuclear Medicine.

[22]  Karl-Josef Langen,et al.  O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. , 2005, Brain : a journal of neurology.

[23]  L. Liau,et al.  Cancer-associated IDH1 mutations produce 2-hydroxyglutarate , 2010, Nature.

[24]  D. Louis WHO classification of tumours of the central nervous system , 2007 .