ROCS-derived features for virtual screening

Rapid overlay of chemical structures (ROCS) is a standard tool for the calculation of 3D shape and chemical (“color”) similarity. ROCS uses unweighted sums to combine many aspects of similarity, yielding parameter-free models for virtual screening. In this report, we decompose the ROCS color force field into color components and color atom overlaps, novel color similarity features that can be weighted in a system-specific manner by machine learning algorithms. In cross-validation experiments, these additional features significantly improve virtual screening performance relative to standard ROCS.

[1]  Hitomi Yuki,et al.  Application of Support Vector Machine to Three-Dimensional Shape-Based Virtual Screening Using Comprehensive Three-Dimensional Molecular Shape Overlay with Known Inhibitors , 2012, J. Chem. Inf. Model..

[2]  S. Muchmore,et al.  The Use of Three‐Dimensional Shape and Electrostatic Similarity Searching in the Identification of a Melanin‐Concentrating Hormone Receptor 1 Antagonist , 2006, Chemical biology & drug design.

[3]  John P. Overington,et al.  ChEMBL: a large-scale bioactivity database for drug discovery , 2011, Nucleic Acids Res..

[4]  J. Andrew Grant,et al.  A fast method of molecular shape comparison: A simple application of a Gaussian description of molecular shape , 1996, J. Comput. Chem..

[5]  Sebastian G. Rohrer,et al.  Maximum Unbiased Validation (MUV) Data Sets for Virtual Screening Based on PubChem Bioactivity Data , 2009, J. Chem. Inf. Model..

[6]  W. Graham Richards,et al.  Ultrafast shape recognition to search compound databases for similar molecular shapes , 2007, J. Comput. Chem..

[7]  Robert P. Sheridan,et al.  Random Forest: A Classification and Regression Tool for Compound Classification and QSAR Modeling , 2003, J. Chem. Inf. Comput. Sci..

[8]  Peter Willett,et al.  Similarity methods in chemoinformatics , 2009, Annu. Rev. Inf. Sci. Technol..

[9]  Jens Krüger,et al.  Development of a pharmacorphore model for pharmacological chaperones targeting mutant trafficking-deficient CNG channels , 2013, Journal of Cheminformatics.

[10]  Benjamin A. Ellingson,et al.  Conformer Generation with OMEGA: Algorithm and Validation Using High Quality Structures from the Protein Databank and Cambridge Structural Database , 2010, J. Chem. Inf. Model..

[11]  Skipper Seabold,et al.  Statsmodels: Econometric and Statistical Modeling with Python , 2010, SciPy.

[12]  R. Todeschini,et al.  Molecular Descriptors for Chemoinformatics: Volume I: Alphabetical Listing / Volume II: Appendices, References , 2009 .

[13]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[14]  John J. Irwin,et al.  Community benchmarks for virtual screening , 2008, J. Comput. Aided Mol. Des..

[15]  Michael M. Mysinger,et al.  Directory of Useful Decoys, Enhanced (DUD-E): Better Ligands and Decoys for Better Benchmarking , 2012, Journal of medicinal chemistry.

[16]  P. Hawkins,et al.  Comparison of shape-matching and docking as virtual screening tools. , 2007, Journal of medicinal chemistry.

[17]  Gilles Marcou,et al.  Do Not Hesitate to Use Tversky - and Other Hints for Successful Active Analogue Searches with Feature Count Descriptors , 2013, J. Chem. Inf. Model..

[18]  Sereina Riniker,et al.  Heterogeneous Classifier Fusion for Ligand-Based Virtual Screening: Or, How Decision Making by Committee Can Be a Good Thing , 2013, J. Chem. Inf. Model..

[19]  Evan Bolton,et al.  PubChem3D: conformer ensemble accuracy , 2013, Journal of Cheminformatics.

[20]  J. A. Grant,et al.  A Gaussian Description of Molecular Shape , 1995 .

[21]  Peter Willett,et al.  Combination Rules for Group Fusion in Similarity‐Based Virtual Screening , 2010, Molecular informatics.

[22]  Sereina Riniker,et al.  Open-source platform to benchmark fingerprints for ligand-based virtual screening , 2013, Journal of Cheminformatics.

[23]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[24]  Ajay N. Jain,et al.  Recommendations for evaluation of computational methods , 2008, J. Comput. Aided Mol. Des..

[25]  M. Stahl,et al.  Scaffold hopping. , 2004, Drug discovery today. Technologies.