The t-Tone Chromatic Number of Random Graphs

A proper 2-tone k-coloring of a graph is a labeling of the vertices with elements from $${\binom{[k]}{2}}$$[k]2 such that adjacent vertices receive disjoint labels and vertices distance 2 apart receive distinct labels. The 2-tone chromatic number of a graph G, denoted τ2(G) is the smallest k such that G admits a proper 2-tone k coloring. In this paper, we prove that w.h.p. for $${p\geq Cn^{-1/4} {\rm ln}^{9/4}n, \tau_2(G_{n, p}) = (2 + o(1))\chi(G_{n, p})}$$p≥Cn-1/4ln9/4n,τ2(Gn,p)=(2+o(1))χ(Gn,p) where $${\chi}$$χ represents the ordinary chromatic number. For sparse random graphs with p = c/n, c constant, we prove that $${\tau_2(G_{n, p}) = \lceil{({\sqrt{8\Delta + 1} + 5})/{2}}}$$τ2(Gn,p)=⌈(8Δ+1+5)/2 where Δ represents the maximum degree. For the more general concept of t-tone coloring, we achieve similar results.

[1]  G. Chartrand,et al.  A generalization of the chromatic number , 1968, Mathematical Proceedings of the Cambridge Philosophical Society.

[2]  Béla Bollobás,et al.  Set colourings of graphs , 1979, Discret. Math..

[3]  Béla Bollobás,et al.  A Probabilistic Proof of an Asymptotic Formula for the Number of Labelled Regular Graphs , 1980, Eur. J. Comb..

[4]  S. Ross A random graph , 1981 .

[5]  Béla Bollobás,et al.  Random Graphs , 1985 .

[6]  Brendan D. McKay,et al.  Asymptotic enumeration by degree sequence of graphs with degreeso(n1/2) , 1991, Comb..

[7]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[8]  Svante Janson,et al.  Random graphs , 2000, Wiley-Interscience series in discrete mathematics and optimization.

[9]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[10]  Allan Bickle,et al.  t-Tone Colorings of Graphs , 2010 .

[11]  E. Chong,et al.  Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2011 .

[12]  Béla Bollobás,et al.  Random Graphs, Second Edition , 2001, Cambridge Studies in Advanced Mathematics.

[13]  Daniel W. Cranston,et al.  New Results in t-Tone Coloring of Graphs , 2013, Electron. J. Comb..