Convergence theorems for uniformly quasi-Lipschitzian mappings

We prove some convergence theorems of the modified Ishikawa iterative sequence with errors for uniformly quasi-Lipschitzian mappings in metric spaces. Our results generalize and improve the corresponding results of Petryshyn and Williamson, Ghosh and Debnath, Liu, and many others.

[1]  Lokenath Debnath,et al.  Convergence of Ishikawa Iterates of Quasi-Nonexpansive Mappings , 1997 .

[2]  Zhou Haiyun,et al.  APPROXIMATING THE ZEROS OF ACCRETIVE OPERATORS BY THE ISHIKAWA ITERATION PROCESS , 1996 .

[3]  J. Schu,et al.  Weak and strong convergence to fixed points of asymptotically nonexpansive mappings , 1991, Bulletin of the Australian Mathematical Society.

[4]  M. O. Osilike,et al.  Weak and strong convergence theorems for fixed points of pseudocontractions and solutions of monotone type operator equations , 2000 .

[5]  Liu Qihou,et al.  Iterative Sequences for Asymptotically Quasi-nonexpansive Mappings with Error Member☆ , 2001 .

[6]  K. L. Singh,et al.  Fixed points and nonexpansive retracts in locally convex spaces , 1984 .

[7]  Billy E. Rhoades,et al.  Fixed points for generalized nonexpansive mappings , 1982 .

[8]  Yuguang Xu,et al.  Ishikawa and Mann Iterative Processes with Errors for Nonlinear Strongly Accretive Operator Equations , 1998 .

[9]  S. Stević APPROXIMATING FIXED POINTS OF NONEXPANSIVE MAPPINGS , 2006 .

[10]  Yeol Je Cho,et al.  SOME GENERAL CONVERGENCE PRINCIPLES WITH APPLICATIONS , 2003 .

[11]  Hong-Kun Xu,et al.  Existence and convergence for fixed points of mappings of asymptotically nonexpansive type , 1991 .

[12]  William A. Kirk,et al.  Fixed point theorems for non-Lipschitzian mappings of asymptotically nonexpansive type , 1974 .

[13]  Yeol Je Cho,et al.  Iterative methods for nonlinear operator equations in banach spaces , 2002 .

[14]  W. Petryshyn,et al.  Strong and weak convergence of the sequence of successive approximations for quasi-nonexpansive mappings , 1973 .

[15]  Jarosław Górnicki,et al.  Weak convergence theorems for asymptotically nonexpansive mappings in uniformly convex Banach spaces , 1989 .

[16]  Hong-Kun Xu,et al.  Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process , 1993 .

[17]  C. E. Chidume,et al.  Convergence theorems for asymptotically pseudocontractive mappings , 2002 .

[18]  Liu Qihou,et al.  Iterative Sequences for Asymptotically Quasi-nonexpansive Mappings , 2001 .

[19]  William A. Kirk,et al.  A FIXED POINT THEOREM FOR ASYMPTOTICALLY NONEXPANSIVE MAPPINGS , 1972 .

[20]  Wataru Takahashi,et al.  A convexity in metric space and nonexpansive mappings, I , 1970 .

[21]  Hu Chang Convergence theorems of iterative sequences for asymptotically nonexpansive mapping in uniformly convex Banach space , 2002 .

[22]  Jürgen Schu,et al.  Iterative construction of fixed points of asymptotically nonexpansive mappings , 1991 .

[23]  Yeol Je Cho,et al.  Approximations for fixed points of φ-hemicontractive mappings by the Ishikawa iterative process with mixed errors , 2001 .

[24]  Xie Ping Ding Iteration processes for nonlinear mappings in convex metric spaces , 1988 .