Transethnic insight into the genetics of glycaemic traits: fine-mapping results from the Population Architecture using Genomics and Epidemiology (PAGE) consortium

[1]  K. Christoffel,et al.  Racial Disparity in the Associations of Cotinine with Insulin Secretion: Data from the National Health and Nutrition Examination Survey, 2007-2012 , 2016, PloS one.

[2]  Stephanie A. Bien,et al.  Variant Discovery and Fine Mapping of Genetic Loci Associated with Blood Pressure Traits in Hispanics and African Americans , 2016, PloS one.

[3]  Josée Dupuis,et al.  Evaluation of a Two‐Stage Approach in Trans‐Ethnic Meta‐Analysis in Genome‐Wide Association Studies , 2016, Genetic epidemiology.

[4]  Jun S. Liu,et al.  The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans , 2015, Science.

[5]  Todd A. Johnson,et al.  Meta-analysis of genome-wide association studies of adult height in East Asians identifies 17 novel loci. , 2015, Human molecular genetics.

[6]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.

[7]  B. Frey,et al.  The human splicing code reveals new insights into the genetic determinants of disease , 2015, Science.

[8]  Ran Tao,et al.  Genetic association analysis under complex survey sampling: the Hispanic Community Health Study/Study of Latinos. , 2014, American journal of human genetics.

[9]  Daniel J. Rader,et al.  Permanent Alteration of PCSK9 With In Vivo CRISPR-Cas9 Genome Editing , 2014, Circulation research.

[10]  Andrew D. Johnson,et al.  Gene-age interactions in blood pressure regulation: a large-scale investigation with the CHARGE, Global BPgen, and ICBP Consortia. , 2014, American journal of human genetics.

[11]  J. Shaw,et al.  Global estimates of diabetes prevalence for 2013 and projections for 2035. , 2014, Diabetes Research and Clinical Practice.

[12]  Mark I. McCarthy,et al.  Pancreatic islet enhancer clusters enriched in type 2 diabetes risk–associated variants , 2013, Nature Genetics.

[13]  Ting Wang,et al.  Track data hubs enable visualization of user-defined genome-wide annotations on the UCSC Genome Browser , 2013, Bioinform..

[14]  H. Maegawa,et al.  Replication Study for the Association of 9 East Asian GWAS-Derived Loci with Susceptibility to Type 2 Diabetes in a Japanese Population , 2013, PloS one.

[15]  C. Chen,et al.  Large Scale Meta-Analyses of Fasting Plasma Glucose Raising Variants in GCK, GCKR, MTNR1B and G6PC2 and Their Impacts on Type 2 Diabetes Mellitus Risk , 2013, PloS one.

[16]  Melissa A. Basford,et al.  The Electronic Medical Records and Genomics (eMERGE) Network: past, present, and future , 2013, Genetics in Medicine.

[17]  Ellen T. Gelfand,et al.  The Genotype-Tissue Expression (GTEx) project , 2013, Nature Genetics.

[18]  B. Balkau,et al.  Multiple functional polymorphisms in the G6PC2 gene contribute to the association with higher fasting plasma glucose levels , 2013, Diabetologia.

[19]  Jiang Li,et al.  Transferability and Fine Mapping of Type 2 Diabetes Loci in African Americans , 2013, Diabetes.

[20]  Dana C. Crawford,et al.  A Systematic Mapping Approach of 16q12.2/FTO and BMI in More Than 20,000 African Americans Narrows in on the Underlying Functional Variation: Results from the Population Architecture using Genomics and Epidemiology (PAGE) Study , 2013, PLoS genetics.

[21]  Robert J. Goodloe,et al.  Genetic variants associated with fasting glucose and insulin concentrations in an ethnically diverse population: results from the Population Architecture using Genomics and Epidemiology (PAGE) study , 2013, BMC Medical Genetics.

[22]  Kenny Q. Ye,et al.  An integrated map of genetic variation from 1,092 human genomes , 2012, Nature.

[23]  Data production leads,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[24]  M. Fornage,et al.  Transferability and fine-mapping of glucose and insulin quantitative trait loci across populations: CARe, the Candidate Gene Association Resource , 2012, Diabetologia.

[25]  Tanya M. Teslovich,et al.  Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways , 2012, Nature Genetics.

[26]  Tanya M. Teslovich,et al.  The Metabochip, a Custom Genotyping Array for Genetic Studies of Metabolic, Cardiovascular, and Anthropometric Traits , 2012, PLoS genetics.

[27]  ENCODEConsortium,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[28]  Margaret A. Pericak-Vance,et al.  Brain Expression Genome-Wide Association Study (eGWAS) Identifies Human Disease-Associated Variants , 2012, PLoS genetics.

[29]  Claude Bouchard,et al.  A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance , 2012, Nature Genetics.

[30]  George J Papanicolaou,et al.  Fasting Glucose GWAS Candidate Region Analysis Across Ethnic Groups in the Multiethnic Study of Atherosclerosis (MESA) , 2012, Genetic epidemiology.

[31]  Jennifer G. Robinson,et al.  Evaluation of the Metabochip Genotyping Array in African Americans and Implications for Fine Mapping of GWAS-Identified Loci: The PAGE Study , 2012, PloS one.

[32]  Wei Wang,et al.  Genotype Imputation of MetabochipSNPs Using a Study‐Specific Reference Panel of ∼4,000 Haplotypes in African Americans From the Women's Health Initiative , 2012, Genetic epidemiology.

[33]  C. Carlson,et al.  The Next PAGE in Understanding Complex Traits: Design for the Analysis of Population Architecture Using Genetics and Epidemiology (PAGE) Study , 2011, American journal of epidemiology.

[34]  L. Groop,et al.  Heritability and familiality of type 2 diabetes and related quantitative traits in the Botnia Study , 2011, Diabetologia.

[35]  Lloyd E Chambless,et al.  Design and implementation of the Hispanic Community Health Study/Study of Latinos. , 2010, Annals of epidemiology.

[36]  Michael Boehnke,et al.  LocusZoom: regional visualization of genome-wide association scan results , 2010, Bioinform..

[37]  Yun Li,et al.  METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..

[38]  P. Bork,et al.  A method and server for predicting damaging missense mutations , 2010, Nature Methods.

[39]  Christian Gieger,et al.  New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk , 2010, Nature Genetics.

[40]  P. Donnelly,et al.  A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies , 2009, PLoS genetics.

[41]  C. Burge,et al.  Most mammalian mRNAs are conserved targets of microRNAs. , 2008, Genome research.

[42]  K. Kaestner,et al.  Dynamic regulation of Pdx1 enhancers by Foxa1 and Foxa2 is essential for pancreas development. , 2008, Genes & development.

[43]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[44]  P. Visscher,et al.  Twin study of genetic and environmental influences on glucose tolerance and indices of insulin sensitivity and secretion , 2003, Diabetologia.

[45]  Leif E. Peterson Partitioning large-sample microarray-based gene expression profiles using principal components analysis , 2003, Comput. Methods Programs Biomed..

[46]  K. Kaestner,et al.  Tissue-specific deletion of Foxa2 in pancreatic beta cells results in hyperinsulinemic hypoglycemia. , 2001, Genes & development.

[47]  D O Stram,et al.  A multiethnic cohort in Hawaii and Los Angeles: baseline characteristics. , 2000, American journal of epidemiology.

[48]  JoAnn E. Manson,et al.  Design of the Women's Health Initiative clinical trial and observational study. The Women's Health Initiative Study Group. , 1998, Controlled clinical trials.

[49]  H. Yki-Järvinen Pathogenesis of non-insulin-dependent diabetes mellitus , 1994, The Lancet.

[50]  A. Folsom,et al.  The Atherosclerosis Risk in Communities (ARIC) Study: design and objectives. The ARIC investigators. , 1989, American journal of epidemiology.

[51]  S B Hulley,et al.  CARDIA: study design, recruitment, and some characteristics of the examined subjects. , 1988, Journal of clinical epidemiology.

[52]  D. Jacobs,et al.  Recruitment in the Coronary Artery Disease Risk Development in Young Adults (Cardia) Study. , 1987, Controlled clinical trials.