Modal Logics of Topological Relations

Logical formalisms for reasoning about relations between spatial regions play a fundamental role in geographical information systems, spatial and constraint databases, and spatial reasoning in AI. In analogy with Halpern and Shoham's modal logic of time intervals based on the Allen relations, we introduce a family of modal logics equipped with eight modal operators that are interpreted by the Egenhofer-Franzosa (or RCC8) relations between regions in topological spaces such as the real plane. We investigate the expressive power and computational complexity of logics obtained in this way. It turns out that our modal logics have the same expressive power as the two-variable fragment of first-order logic, but are exponentially less succinct. The complexity ranges from (undecidable and) recursively enumerable to highly undecidable, where the recursively enumerable logics are obtained by considering substructures of structures induced by topological spaces. As our undecidability results also capture logics based on the real line, they improve upon undecidability results for interval temporal logics by Halpern and Shoham. We also analyze modal logics based on the five RCC5 relations, with similar results regarding the expressive power, but weaker results regarding the complexity.

[1]  Ian Pratt-Hartmann,et al.  A Topological Constraint Language with Component Counting , 2002, J. Appl. Non Class. Logics.

[2]  Anthony G. Cohn,et al.  Qualitative Spatial Representation and Reasoning: An Overview , 2001, Fundam. Informaticae.

[3]  Bowman L. Clarke,et al.  Individuals and points , 1985, Notre Dame J. Formal Log..

[4]  Anthony G. Cohn Modal and Non Modal Qualitative Spatial Logics , 1993 .

[5]  Anthony G. Cohn,et al.  Qualitative and Topological Relationships in Spatial Databases , 1993, SSD.

[6]  Carsten Lutz,et al.  Combining interval-based temporal reasoning with general TBoxes , 2004, Artif. Intell..

[7]  Maarten Marx,et al.  Undecidability of Compass Logic , 1999, J. Log. Comput..

[8]  D. Harel Recurring dominoes: making the highly undecidable highly understandable , 1985 .

[9]  Michael Wessel,et al.  Obstacles on the Way to Qualitative Spatial Reasoning with Description Logics: Some Undecidability Results , 2001, Description Logics.

[10]  Valentin Goranko,et al.  Sahlqvist Formulas in Hybrid Polyadic Modal Logics , 2001, J. Log. Comput..

[11]  A. Tarski,et al.  The Algebra of Topology , 1944 .

[12]  Henry A. Kautz,et al.  Constraint propagation algorithms for temporal reasoning: a revised report , 1989 .

[13]  Jochen Renz,et al.  A Canonical Model of the Region Connection Calculus , 1997, J. Appl. Non Class. Logics.

[14]  Enrico Franconi,et al.  A Temporal Description Logic for Reasoning about Actions and Plans , 1998, J. Artif. Intell. Res..

[15]  Valentin B. Shehtman,et al.  Modal Logics of Regions and Minkowski Spacetime , 2005, J. Log. Comput..

[16]  Bernhard Nebel,et al.  On the Complexity of Qualitative Spatial Reasoning: A Maximal Tractable Fragment of the Region Connection Calculus , 1999, Artif. Intell..

[17]  Brandon Bennett Determining Consistency of Topological Relations , 2004, Constraints.

[18]  Dov M. Gabbay,et al.  EXPRESSIVE FUNCTIONAL COMPLETENESS IN TENSE LOGIC , 1981 .

[19]  Ulrike Sattler,et al.  Modal Logic and the Two-Variable Fragment , 2001, CSL.

[20]  Marcus Schaefer,et al.  Decidability of string graphs , 2001, STOC '01.

[21]  Valentin Goranko,et al.  Using the Universal Modality: Gains and Questions , 1992, J. Log. Comput..

[22]  Valentin Goranko,et al.  Modal logic with names , 1993, J. Philos. Log..

[23]  Frank Wolter,et al.  The Structure of Lattices of Subframe Logics , 1997, Ann. Pure Appl. Log..

[24]  Dimitris Papadias,et al.  Topological Inference , 1995, IJCAI.

[25]  Anthony G. Cohn,et al.  A Spatial Logic based on Regions and Connection , 1992, KR.

[26]  Brandon Bennett,et al.  Spatial Reasoning with Propositional Logics , 1994, KR.

[27]  John G. Stell,et al.  Boolean connection algebras: A new approach to the Region-Connection Calculus , 2000, Artif. Intell..

[28]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[29]  E. Allen Emerson,et al.  Temporal and Modal Logic , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[30]  Johan van Benthem,et al.  The Logic of Time , 1983 .

[31]  Brandon Bennett,et al.  Modal Logics for Qualitative Spatial Reasoning , 1996, Log. J. IGPL.

[32]  Kousha Etessami,et al.  First-Order Logic with Two Variables and Unary Temporal Logic , 2002, Inf. Comput..

[33]  Yoav Shoham,et al.  A propositional modal logic of time intervals , 1991, JACM.

[34]  M. de Rijke,et al.  The Modal Logic of Inequality , 1992, J. Symb. Log..

[35]  Diego Calvanese,et al.  The Description Logic Handbook: Theory, Implementation, and Applications , 2003, Description Logic Handbook.

[36]  Michael Winter,et al.  A representation theorem for Boolean contact algebras , 2005, Theor. Comput. Sci..

[37]  Bernhard Nebel,et al.  Reasoning about temporal relations: a maximal tractable subclass of Allen's interval algebra , 1994, JACM.

[38]  Max J. Egenhofer,et al.  Deriving the Composition of Binary Topological Relations , 1994, J. Vis. Lang. Comput..

[39]  Yde Venema,et al.  Expressiveness and Completeness of an Interval Tense Logic , 1990, Notre Dame J. Formal Log..

[40]  Dan Suciu,et al.  Topological queries in spatial databases , 1996, J. Comput. Syst. Sci..

[41]  Werner Nutt On the Translation of Qualitative Spatial Reasoning Problems into Modal Logics , 1999, KI.

[42]  Herbert B. Enderton,et al.  A mathematical introduction to logic , 1972 .

[43]  Maarten Marx,et al.  Multi-dimensional modal logic , 1997, Applied logic series.

[44]  D. Gabbay,et al.  Many-Dimensional Modal Logics: Theory and Applications , 2003 .

[45]  Ivo Düntsch,et al.  A relation - algebraic approach to the region connection calculus , 2001, Theor. Comput. Sci..

[46]  Michael Zakharyaschev,et al.  On the Products of Linear Modal Logics , 2001, J. Log. Comput..

[47]  D. Gabbay,et al.  Temporal Logic Mathematical Foundations and Computational Aspects , 1994 .

[48]  R. Maddux The equational theory of CA 3 is undecidable , 1980 .

[49]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.

[50]  James F. Allen Towards a General Theory of Action and Time , 1984, Artif. Intell..

[51]  D. Gabbay An Irreflexivity Lemma with Applications to Axiomatizations of Conditions on Tense Frames , 1981 .

[52]  J. Burgess Decidability for branching time , 1980 .

[53]  D. Peled,et al.  Temporal Logic: Mathematical Foundations and Computational Aspects, Volume 1 , 1995 .

[54]  Ian Pratt-Hartmann,et al.  A Complete Axiom System for Polygonal Mereotopology of the Real Plane , 1998, J. Philos. Log..

[55]  Kamal Lodaya,et al.  Sharpening the Undecidability of Interval Temporal Logic , 2000, ASIAN.

[56]  D. Gabbay Expressive Functional Completeness in Tense Logic (Preliminary report) , 1981 .

[57]  B. L. Clark Individuals and points. , 1985 .

[58]  Roger D. Maddux The Equational Theory of CA3 is Undecidable , 1980, J. Symb. Log..

[59]  M. Egenhofer,et al.  Point-Set Topological Spatial Relations , 2001 .

[60]  Thomas Marthedal Rasmussen Signed Interval Logic , 1999, CSL.