Evaluation of massively parallel linear sparse solvers on unstructured finite element meshes

The performance of massively parallel direct and iterative methods for solving large sparse systems of linear equations arising in finite element method on unstructured (free) meshes in solid mechanics is evaluated on a latest high performance computing system. We present a comprehensive comparison of a representative group of direct and iterative sparse solvers. Solution time, parallel scalability, and robustness are evaluated on test cases with up to 40million degrees of freedoms and 3.3billion nonzeros. The results show that direct solution methods, such as multifrontal with hybrid parallel implementation, as well as new hybrid adaptive block factorized preconditioning iterative methods can take a full advantage of a modern high performance computing system and provide superior solution time and parallel scalability performance.

[1]  Jack Dongarra,et al.  Numerical Linear Algebra for High-Performance Computers , 1998 .

[2]  Robert D. Falgout,et al.  hypre: A Library of High Performance Preconditioners , 2002, International Conference on Computational Science.

[3]  W. Jason,et al.  アルゴリズム869:ODRPACK95:範囲制約のある重み付け直交距離回帰コード , 2007 .

[4]  Ahmed Sameh,et al.  Efficient iterative solvers for structural dynamics problems , 2004 .

[5]  John K. Reid,et al.  The Multifrontal Solution of Indefinite Sparse Symmetric Linear , 1983, TOMS.

[6]  Timothy A. Davis,et al.  Direct Methods for Sparse Linear Systems (Fundamentals of Algorithms 2) , 2006 .

[7]  Seid Koric,et al.  Sparse matrix factorization on massively parallel computers , 2009, Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis.

[8]  Nicholas I. M. Gould,et al.  A numerical evaluation of sparse direct solvers for the solution of large sparse symmetric linear systems of equations , 2007, TOMS.

[9]  V. E. Henson,et al.  BoomerAMG: a parallel algebraic multigrid solver and preconditioner , 2002 .

[10]  Jack J. Dongarra,et al.  A set of level 3 basic linear algebra subprograms , 1990, TOMS.

[11]  Alex Pothen,et al.  A Scalable Parallel Algorithm for Incomplete Factor Preconditioning , 2000, SIAM J. Sci. Comput..

[12]  Carlo Janna,et al.  Enhanced Block FSAI Preconditioning Using Domain Decomposition Techniques , 2013, SIAM J. Sci. Comput..

[13]  Alvaro L. G. A. Coutinho,et al.  A Comparison of Iterative Multi-level Finite Element Solvers , 1998 .

[14]  Seid Koric,et al.  Efficient thermo‐mechanical model for solidification processes , 2006 .

[15]  Patrick R. Amestoy,et al.  Multifrontal parallel distributed symmetric and unsymmetric solvers , 2000 .

[16]  André Fortin,et al.  Comparison of the performance of some finite element discretizations for large deformation elasticity problems , 2010 .

[17]  Alan George,et al.  Computer Solution of Large Sparse Positive Definite , 1981 .

[18]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[19]  M Viceconti,et al.  A comparison between automatically generated linear and parabolic tetrahedra when used to mesh a human femur , 2001, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[20]  A. C. Damhaug,et al.  The impact of an efficient linear solver on finite element analyses , 1999 .

[21]  J. Pasciak,et al.  Computer solution of large sparse positive definite systems , 1982 .

[22]  Markus Hegland,et al.  Block jacobi preconditioning of the conjugate gradient method on a vector processor , 1992 .

[23]  Seid Koric,et al.  Sparse linear solvers on massively parallel machines , 2009 .

[24]  Arturo Cifuentes,et al.  A performance study of tetrahedral and hexahedral elements in 3-D finite element structural analysis , 1992 .

[25]  James Demmel,et al.  SuperLU_DIST: A scalable distributed-memory sparse direct solver for unsymmetric linear systems , 2003, TOMS.

[26]  Patrick R. Amestoy,et al.  Analysis and comparison of two general sparse solvers for distributed memory computers , 2001, TOMS.

[27]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[28]  Edmond Chow,et al.  Parallel Implementation and Practical Use of Sparse Approximate Inverse Preconditioners with a Priori Sparsity Patterns , 2001, Int. J. High Perform. Comput. Appl..