Enhancing the capacitance and active surface utilization of supercapacitor electrode by graphene nanoplatelets

[1]  M. Sgroi,et al.  Electrocapacitance of hybrid film based on graphene oxide reduced by ascorbic acid , 2015 .

[2]  M. A. Hernández-Fenollosa,et al.  Seed-free electrodeposition of ZnO bi-pods on electrophoretically-reduced graphene oxide for optoelectronic applications , 2015 .

[3]  D. Pullini,et al.  Effect of combined chemical and electrochemical reduction of graphene oxide on morphology and structure of electrodeposited ZnO , 2014 .

[4]  T. Centeno,et al.  Optimization of the characterization of porous carbons for supercapacitors , 2013 .

[5]  Y. Gogotsi,et al.  Capacitive energy storage in nanostructured carbon-electrolyte systems. , 2013, Accounts of chemical research.

[6]  L. Nicolais,et al.  Mechanical properties of low-density polyethylene filled by graphite nanoplatelets , 2012, Nanotechnology.

[7]  R. Gupta,et al.  Graphite, graphene, and their polymer nanocomposites , 2012 .

[8]  K. Novoselov,et al.  A roadmap for graphene , 2012, Nature.

[9]  Sundara Ramaprabhu,et al.  A Raman spectroscopic investigation of graphite oxide derived graphene , 2012 .

[10]  C. Lekakou,et al.  High-performance Supercapacitor cells with Activated Carbon/MWNT nanocomposite electrodes , 2012, IOP Conference Series: Materials Science and Engineering.

[11]  Chunlei Wang,et al.  Electrostatic spray deposition of graphene nanoplatelets for high-power thin-film supercapacitor electrodes , 2012, Journal of Solid State Electrochemistry.

[12]  Lei Zhang,et al.  A review of electrode materials for electrochemical supercapacitors. , 2012, Chemical Society reviews.

[13]  A. Yu,et al.  Graphene nanoplatelets supported MnO 2 nanoparticles for electrochemical supercapacitor , 2011 .

[14]  Jean-Christophe Charlier,et al.  Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications , 2010 .

[15]  X. Bao,et al.  Enhanced capacitance of manganese oxide via confinement inside carbon nanotubes. , 2010, Chemical communications.

[16]  R. Ruoff,et al.  Review of Best Practice Methods for Determining an Electrode Material's Performance for Ultracapacitors , 2010, 1005.0805.

[17]  Yongsheng Chen,et al.  SUPERCAPACITOR DEVICES BASED ON GRAPHENE MATERIALS , 2009 .

[18]  Jeng‐Kuei Chang,et al.  Pseudocapacitive behavior of Mn oxide in aprotic 1-ethyl-3-methylimidazolium–dicyanamide ionic liquid , 2009 .

[19]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[20]  R. Ruoff,et al.  Graphene-based ultracapacitors. , 2008, Nano letters.

[21]  P. Simon,et al.  Electrochemical Capacitors for Energy Management , 2008, Science.

[22]  Ugo Icardi,et al.  Compact direct methanol fuel cells for portable application , 2008 .

[23]  A. Burke R&D considerations for the performance and application of electrochemical capacitors , 2007 .

[24]  A. Geim,et al.  Graphene: Exploring carbon flatland , 2007 .

[25]  G. Yang,et al.  Preparation of Activated Carbon with Large Specific Surface Area from Reed Black Liquor , 2007, Environmental technology.

[26]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[27]  M. Winter,et al.  What are batteries, fuel cells, and supercapacitors? , 2004, Chemical reviews.

[28]  D. Do,et al.  The Dubinin-Radushkevich equation and the underlying microscopic adsorption description , 2001 .

[29]  A. Burke Ultracapacitors: why, how, and where is the technology , 2000 .

[30]  A. Aricò,et al.  Improved Pd electro-catalysis for oxygen reduction reaction in direct methanol fuel cell by reduced graphene oxide , 2014 .

[31]  C. Tuck Modern battery technology , 1991 .