Mathematical analysis of a coupling method for the practical computation of homogenized coefficients

We present the mathematical study of a computational approach originally introduced by R. Cottereau in [8]. The approach aims at evaluating the effective (a.k.a. homogenized) coefficient of a medium with some finescale structure. It combines, using the Arlequin coupling method, the original fine-scale description of the medium with an effective description and optimizes upon the coefficient of the effective medium to best fit the response of an equivalent purely homogeneous medium. We prove here that the approach is mathematically well-posed and that it provides, under suitable assumptions, the actual value of the homogenized coefficient of the original medium in the limit of asymptotically infinitely fine structures. The theory presented here therefore usefully complements our numerical developments of [12].

[1]  L. Durlofsky Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media , 1991 .

[2]  Frédéric Legoll,et al.  Introduction to numerical stochastic homogenization and the related computational challenges: some recent developments , 2011 .

[3]  Hachmi Ben Dhia,et al.  Multiscale mechanical problems: the Arlequin method , 1998 .

[4]  Claude Le Bris,et al.  Some Remarks on a Coupling Method for the Practical Computation of Homogenized Coefficients , 2020, SIAM J. Sci. Comput..

[5]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[6]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[7]  Luc Tartar,et al.  The General Theory of Homogenization: A Personalized Introduction , 2009 .

[8]  Régis Cottereau,et al.  Numerical strategy for unbiased homogenization of random materials , 2013 .

[9]  G. Allaire,et al.  Shape optimization by the homogenization method , 1997 .

[10]  F. Legoll,et al.  On the best constant matrix approximating an oscillatory matrix-valued coefficient in divergence-form operators , 2016, ESAIM: Control, Optimisation and Calculus of Variations.

[11]  V. Zhikov,et al.  Homogenization of Differential Operators and Integral Functionals , 1994 .

[12]  Guillaume Rateau,et al.  The Arlequin method as a flexible engineering design tool , 2005 .

[13]  P. Donato,et al.  An introduction to homogenization , 2000 .

[14]  A. Bourgeat,et al.  Elements de comparaison entre la methode d'homogeneisation et la methode de prise de moyenne avec fermeture , 1988 .

[15]  G. Rateau Méthode Arlequin pour les problèmes mécaniques multi-échelles : applications à des problèmes de jonction et de fissuration de structures élancées , 2003 .

[16]  Frédéric Legoll,et al.  MsFEM à la Crouzeix-Raviart for Highly Oscillatory Elliptic Problems , 2013 .

[17]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[18]  Régis Cottereau,et al.  A stochastic-deterministic coupling method for continuum mechanics , 2011 .

[19]  Jens Markus Melenk,et al.  hp-Interpolation of Nonsmooth Functions and an Application to hp-A posteriori Error Estimation , 2005, SIAM J. Numer. Anal..

[20]  Approximation grossière dʼun problème elliptique à coefficients hautement oscillants , 2013 .